a2 United States Patent

US007185309B1

(10) Patent No.: US 7,185,309 B1

Kulkarni et al. 45) Date of Patent: Feb. 27, 2007
(54) METHOD AND APPARATUS FOR 2004/0006584 Al 1/2004 Vandeweerd
APPLICATION-SPECIFIC PROGRAMMABLE 2004/0128120 Al 7/2004 Coburn et al.
?;?E’Iggg ?;I‘ECCIITIIT(;E;:IEI;%%NR% ONAcpp 2005003409 AL 22005 Sato et al
2005/0114593 Al 5/2005 Cassell et al.
(75) Inventors: Chidamber R. Kulkarni, San Jose, CA 2005/0172085 Al 82005 Klingman
(US): Gordon J. Brebner, Monte 2005/0172087 Al 2005 Klingman
Sereno, CA (US); Eric R. Keller, 2005/0172088 Al 8/2005 Klingman
Boulder, CO (US); Philip B. 2005/0172089 Al 82005 Klingman
James-Roxby, Longmont, CO (US) 2005/0172090 A1 82005 Klingman
. . 2005/0172289 Al 8/2005 Klingman
(73) Assignee: Xilinx, Inc., San Jose, CA (US) 20050172290 Al 82005 Klingman
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
(21) Appl. No.: 10/769,591 OTHER PUBLICATIONS
(22) Filed: Jan. 30, 2004 U.S. Appl. No. 10/769,330, filed Jan. 30, 2004, James-Roxby et al.
(51) Int. CL (Continued)
GOGF 17/50 (2006.01) Primary Examiner—Thuan Do
(52) US.CL ot 716/18; 718/2 Assistant Examiner—Binh Tat
(58) Field of Classification Search 716/18, (74) Attorney, Agent, or Firm—Robert Brush
716/2,3; 709/217, 719/313
See application file for complete search history. 1)) ABSTRACT
(56) References Cited
U.S. PATENT DOCUMENTS Programmable architecture for implementing a message
5,867,180 A * 2/1999 Katayama et al. 345547 Processing system using an integrated circuit is described. In
6.078736 A 6/2000 Guccione an .example, specification data is re.celved that. includes
6182.183 Bl 1/2001 Wingard et al. attributes of the memory system. A logical description of the
6:230:307 Bl 5/2001 Davis et al. memory system is generated in response to the specification
6,324,629 Bl 11/2001 Kulkarni et al. data. The logical description defines a memory component
6,405,160 Bl 6/2002 Djaja et al. and a memory-interconnection component. A physical
6,581,187 B2 6/2003 Gupta et al. description of the memory system is generated in response
6,647,431 B1* 11/2003 Utas 719/313 to the logical description. The physical description includes
2’%}‘ ’ggg E% * 15; 5883 gavl;dson etal e 716/17 memory circuitry associated with the integrated circuit
T reoner defined by the memory component. The memory circuitry
6,891,397 Bl 3/2005 - Brebner includes an interconnection topology defined by the memory
6,918,103 B2* 7/2005 Brawn et al. 716/18 interconnection component
2003/0033374 Al* 2/2003 Hom et al. 709/217 P ’
2003/0126195 Al 7/2003 Reynolds et al.
2003/0182083 Al 9/2003 Schwenke et al. 11 Claims, 15 Drawing Sheets

Ey AT

702

SPECIFY MEMORY SUBSYSTEM USING
MIDL 704

GENERATE LOGICAL VIEW OF MEMORY 708
SUBSYSTEM

ANALYZE AND/OR OPTIMIZE MEMORY 707
SUBSYSTEM

I

MAP LOGICAL VIEW OF MEMORY
SUBSYSTEM ONTO FPGA ARCHITECTURE 708
TO PRODUCE FPGA DESIGN DATA

!

COMBINE FPGA DESIGN DATA WITH 710
OTHER DESIGN DATA TO DEFINE SYSTEM

!

PROCESS GOMBINED FPGA DESIGN DATA
TG PRODUCE CONFIGURATION BITSTREAM 712

US 7,185,309 B1
Page 2

U.S. PATENT DOCUMENTS

2005/0177671 Al
2005/0210178 Al
2005/0223384 Al
2005/0262286 Al

OTHER PUBLICATIONS

U.S. Appl. No. 10/769,331, filed Jan. 30, 2004, Keller et al.

U.S. Appl. No. 10/769,592, filed Jan. 30, 2004, Brebner et al.
Gordon Brebner; “Multithreading for Logic-Centric Systems”; 12th
International Conference on Field Programmable Logic and Appli-
cations; Montepellier, France; Sep. 2-4, 2002; Springer LNCS 2438,
pp. 5-14.

8/2005 Klingman
9/2005 Klingman
10/2005 Klingman
11/2005 Klingman

Gordon Brebner; “Single-chip Gigabit Mixed-version IP Router on
Virtex-II Pro”; Proceedings of the 10th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM’02
);Apr. 2002; IEEE Computer Science Press; pp. 35-44.

Xilinx, Inc.; U.S. Appl. No. 10/402,659 filed on Mar. 28, 2003 by
James-Roxby.

Xilinx, Inc.; U.S. Appl. No. 10/420,652 filed on Apr. 21, 2003 by
Brebner.

Xilinx, Inc.; U.S. Appl. No. 10/421,013 filed on Apr. 21, 2003 by
Brebner.

* cited by examiner

US 7,185,309 B1

Sheet 1 of 15

Feb. 27, 2007

U.S. Patent

el 1

AHOWaW
WYHDOHd ot
” /
0e!
AHLINDHIO _oﬂ_wa_ \ vodd
HIAIZOSNVHL O/ | nowvuneisnco
8Ll AHOW3N
941 —~—_NOILVHNOIINOD 901
2kt Okl 80l N rot
i [aor] [ao] [ao] ([sof] NOQ
| so1 | | a10||| | g10] | 10| ||| g1 g0l
WvHg | =——— —— | Nvyg
[gor | 810 a10 [g0 |
———— %0019 ——
HOSS3O0Hd
| g0 | g10 a10 gol
pi—
WvHg | —— ——— | Wvhg
I | g1o}|| | g10] | go| ||| a19] [g0 |
[woa] [gor] [o] [go1| [aoi] woa

I 'Ol

oSt

{

)

AHOW3IN
IvNY3LX3

US 7,185,309 B1

Sheet 2 of 15

Feb. 27, 2007

U.S. Patent

¢ Old
002
912
N AY
802
w 3asvaviva
INHO4L1Vv1d 140S 3asvavliva
vOd4d IV
=
e mwN mwN
NOILDO3S 1001 | -] NOILO3S] - o NOID3S | | (S)301A3a
NDIS3d ¥YOdH INHO4L1V1d 140S LNdNI 1NdNI
902 ¥02 202 012

3sSvav.iva
VOdAd

8¢

U.S. Patent Feb. 27, 2007 Sheet 3 of 15 US 7,185,309 B1

300 (START)~ 302

DEFINE MP SYSTEM SPECIFICATION
DATA USING API ASSOCIATED
WITH SOFT PLATFORM
ARCHITECTURE

l

GENERATE LOGICAL VIEW OF MP
SYSTEM IN ACCORDANCE WITH MP +—— 306
SYSTEM SPECIFICATION DATA

:

MAP LOGICAL VIEW ONTO FPGA
ARCHITECTURE TO PRODUCE —~— 308
FPGA DESIGN DATA

:

PROCESS FPGA DESIGN DATA TO
PRODUCE CONFIGURATION BITSTREAM |—— 310
DATA

$

LOAD CONFIGURATION BITSTREAM
INTO FPGA

@ 314

FIG. 3

——~— 304

——~—312

US 7,185,309 B1

Sheet 4 of 15

Feb. 27, 2007

U.S. Patent

v 'Old
oLy
L0V
94
(S)dO4
sov 20y
2y
SIN w = 0Sy
Sov
SOP
HOLINOW
/1S31
LININOJINOD /oNg3a
NOILYDINNIWIWNOD - 9Lv
SS3004d FOV4HILNI (S)did
LY gy — LOY JOYLNOD
901 80V /ANVYHOO0Hd
LNINOJINOD SS3D0Hd
vl
cov 7 INHO4LV1d 140S
00V \

US 7,185,309 B1

Sheet 5 of 15

Feb. 27, 2007

U.S. Patent

G Old
wom 00S
90S
Jsvaviva
14dOn
AHONIN Advdail
vom IdIN
<
me Nwm mwm
viva OO O
NOISIa | . .| Nouwoas
vodd 1NdNI
NOI1D3S 13d0ON AHOW3IAIN m
c0S
3Svav.ivd
AHOW3IN
<Omm
orm

US 7,185,309 B1

Sheet 6 of 15

Feb. 27, 2007

U.S. Patent

e EE—

9 'OlId
009
&Y) |
y (
IN3INI13 30V4H3ALNI
AHOW3N NOILOINNODHILNI 30V4431NI
/ADV4H31INI O/l AHOW3IN AHOW3IN

ININITI AHOWIN

LINIWTT3
TVYNOILVLNdNOD

)

809

U.S. Patent Feb. 27, 2007 Sheet 7 of 15 US 7,185,309 B1

700 @ 702

SPECIFY MEMORY SUBSYSTEM USING | 704
MIDL

'

GENERATE LOGICAL VIEW OF MEMORY
SUBSYSTEM

'

ANALYZE AND/OR OPTIMIZE MEMORY | -4
SUBSYSTEM

!

MAP LOGICAL VIEW OF MEMORY
SUBSYSTEM ONTO FPGA ARCHITECTURE p—— 708
TO PRODUCE FPGA DESIGN DATA

!

COMBINE FPGA DESIGN DATA WITH
OTHER DESIGN DATA TO DEFINE SYSTEM

l

PROCESS COMBINED FPGA DESIGN DATA
TO PRODUCE CONFIGURATION BITSTREAM [~ 712
DATA

!

LOAD BITSTREAM INTO FPGA ——716

——~— 706

—~—710

FIG. 7

U.S. Patent Feb. 27, 2007 Sheet 8 of 15 US 7,185,309 B1

ABSTRACT

i
MEMORY
806
ADDRESSES [~

—= ABSTRACT
8 TIME
804 802
800
INTERCONNECT 810 -
RESOURCES

FIG. 8

U.S. Patent

Feb. 27, 2007

Sheet 9 of 15

INCOMING
MESSAGE —=

BRAM

US 7,185,309 B1

902y

BRAM | ®®®

’ - ——f

BRAM

DATA

¢ 1 ¢ {
904 904 904

900

N

COMPUTATIONAL
ELEMENT

COMPUTATIONAL
ELEMENT

COMPUTATIONAL
ELEMENT

:

906

Z

906

FIG. 9

/-10021 /10022

\

906

1002

BRAM BRAM eeo

BRAM

! |

INCOMING
MESSAGE ———

MEMORY INTERFACE

L ~_- 1004

DATA

|

|

COMPUTATIONAL
ELEMENT

COMPUTATIONAL
ELEMENT

1006

FIG. 10

10086

1000

US 7,185,309 B1

Sheet 10 of 15

Feb. 27, 2007

U.S. Patent

SH\EIERE]
IVYNOILVLNdINOD

L1 "OIld
001 | 209
N 9011
\ 2Ll
2011 pOLL (o:/v N
% % - m PVAGE
21907 D01 |, wy |
AHONIN OHLNOD JOV-HILNI] !
/
8011

US 7,185,309 B1

Sheet 11 of 15

Feb. 27, 2007

U.S. Patent

¢l Oid
wom_ 0021
9021
3svav.iva N
13A0ON
av3gHL
-IL7NN 3sSvavivd
IAILINIEG
AVIHHLILINN
mow_ mowr
L|| NOILD3S _U e
vivd 13A0N
NDIS3a . .1 NOILDO3s
v0Z | 2021
asvav.iva
vOd4
012t

U.S. Patent Feb. 27, 2007 Sheet 12 of 15 US 7,185,309 B1

—1302
START _—13% HREAD
stop 139 |
SUSPEND — 2/ 13%8_
cLock =~ 1310

1812 IS FINISHED

1314 IS SUSPENDED

(JJJ
R

1316 1320 1318

FIG. 13
1502, 1502, 15024 1502,
1508 1508 1508 1508
1506
g THREAD S THREAD S THREAD g THREAD S
1510 1510 1510 1510
1
OR |
1500 1504

FIG. 15

U.S. Patent Feb. 27, 2007 Sheet 13 of 15 US 7,185,309 B1

15402 1 15402 5 13402 N
THREAD THREAD THREAD
MODEL MODEL |e e e | MODEL

|
1406«{1408«{ 1406«{1408«1 1406— 1408~
! Y

INTERCONNECTION COMPONENT

\‘~—1404

THREAD
MODEL

FIG. 14

U.S. Patent Feb. 27, 2007 Sheet 14 of 15 US 7,185,309 B1

1606 1608
1624
Fop LIT coP
PRIMITIVES [} 1626 PRIMITIVES
1610 1612
pp [11628 SIGNAL GROUPING
PRIMITIVES [} 1630 PRIMITIVES
~ 1614 ,~ 1616
NTERPROCESS MEMORY ELEMENT
IVE
COMMUNICATION PRIMITIVES
PRIMITIVES
1620
1618 IMPLEMEMTATION
RUN-TIME METRIC
PRIMITIVES PRIMITIVES
1622
DEBUGGING
PRIMITIVES
1600
<>
1602
N
FIG. 16

1604

U.S. Patent Feb. 27, 2007 Sheet 15 of 15 US 7,185,309 B1

SUPPORT
1704 1700
CPU
1701 ‘
OUTPUT
DEVICE(S) Y
1711
—
IO MEMORY
INTERFACE =—= 1703
1702
INPUT
DEVICE(S)
1712

FIG. 17

US 7,185,309 Bl

1

METHOD AND APPARATUS FOR
APPLICATION-SPECIFIC PROGRAMMABLE
MEMORY ARCHITECTURE AND
INTERCONNECTION NETWORK ON A CHIP

FIELD OF THE INVENTION

One or more aspects of the present invention relate
generally to integrated circuit design tools and, more par-
ticularly, to a programmable architecture for implementing
a message processing system using an integrated circuit.

BACKGROUND OF THE INVENTION

Programmable logic devices (PLDs) exist as a well-
known type of integrated circuit (IC) that may be pro-
grammed by a user to perform specified logic functions.
There are different types of programmable logic devices,
such as programmable logic arrays (PLAs) and complex
programmable logic devices (CPLDs). One type of pro-
grammable logic device, known as a field programmable
gate array (FPGA), is very popular because of a superior
combination of capacity, flexibility, time-to-market, and
cost.

An FPGA typically includes an array of configurable logic
blocks (CLBs) surrounded by a ring of programmable
input/output blocks (I0Bs). The CLBs and 1OBs are inter-
connected by a programmable interconnect structure. The
CLBs, I0Bs, and interconnect structure are typically pro-
grammed by loading a stream of configuration data (known
as a bitstream) into internal configuration memory cells that
define how the CLBs, I0OBs, and interconnect structure are
configured. Additionally, an FPGA may include embedded
memory, such as block random access memories (BRAMs),
one or more microprocessors, sometimes referred to as
embedded cores, and digital clock managers (DCMs). The
combination of components on an FPGA may be used for
system-level integration, sometimes referred to as “system-
on-a-chip” (SOC).

Historically, FGPAs have not been employed in network
processing applications. Rather, Network devices, such as
routers, employ dedicated, special purpose components for
processing packets that propagate through the network.
Conventionally, network devices employ network proces-
sors or application specific integrated circuits (ASICs) to
provide the desirable packet processing/network processing
functions. Such processor- or ASIC-based architectures,
however, are static in nature, providing a fixed amount of
resources for packet processing/network processing func-
tions. Accordingly, there exists a need in the art for more
flexible message processing architectures.

SUMMARY OF THE INVENTION

One aspect of the invention relates to designing a memory
system for implementation using an integrated circuit.
Specification data is received that includes attributes of the
memory system. A logical description of the memory system
is generated in response to the specification data. The logical
description defines a memory component and a memory-
interconnection component. A physical description of the
memory system is generated in response to the logical
description. The physical description includes memory cir-
cuitry associated with the integrated circuit defined by the
memory component. The memory circuitry includes an
interconnection topology defined by the memory intercon-
nection component.

20

25

30

35

40

45

50

55

60

65

2

Another aspect of the invention relates to a design tool for
designing a memory system for implementation using an
integrated circuit. An input section is adapted to specify
attributes of the memory system. A first database stores a
memory model defining a memory component and a
memory interconnection component. A second database
stores a physical memory configuration associated with the
integrated circuit. A memory model section includes a first
portion and a second portion. The first portion is adapted to
generate an instance of the memory component and an
instance of the memory-interconnection component. The
second portion is adapted to implement the memory com-
ponent instance and the memory-interconnection component
instance in terms of memory circuitry and interconnection
circuitry, respectively, of the physical memory configuration
to produce a physical view of the memory system.

BRIEF DESCRIPTION OF THE DRAWINGS

Accompanying drawing(s) show exemplary embodiment
(s) in accordance with one or more aspects of the invention;
however, the accompanying drawing(s) should not be taken
to limit the invention to the embodiment(s) shown, but are
for explanation and understanding only.

FIG. 1 is a block diagram depicting an exemplary embodi-
ment of an FPGA coupled to external memory and a
program memory;

FIG. 2 is a block diagram depicting an exemplary embodi-
ment of a design tool for designing a message processing
system for implementation using an FPGA;

FIG. 3 is a flow diagram depicting an exemplary embodi-
ment of a process for designing a message processing
system for implementation within an FPGA;

FIG. 4 is a block diagram depicting an exemplary embodi-
ment of a soft platform architecture in accordance with one
or more aspects of the invention;

FIG. 5 is a block diagram depicting an exemplary embodi-
ment of a design tool for designing a memory subsystem for
implementation using an FPGA;

FIG. 6 is a block diagram depicting an exemplary embodi-
ment of a memory model in accordance with one or more
aspects of the invention;

FIG. 7 is a flow diagram depicting an exemplary embodi-
ment of a process for designing a memory subsystem for
implementation using an FPGA;

FIG. 8 is a graph illustrating an exemplary embodiment of
a memory analysis model;

FIG. 9 is a block diagram depicting an exemplary embodi-
ment of a memory subsystem that may be implemented
using the memory model of FIG. 6;

FIG. 10 is a block diagram depicting another exemplary
embodiment of a memory subsystem that may be imple-
mented using the memory model of FIG. 6;

FIG. 11 is a block diagram depicting an exemplary
embodiment of a cooperative memory interface that may be
implemented using the memory model of FIG. 6;

FIG. 12 is a block diagram depicting an exemplary
embodiment of a design tool for designing a multithread
model for implementation using an FPGA;

FIG. 13 is a block diagram depicting an exemplary
embodiment of a thread model in accordance with one or
more aspects of the invention;

FIG. 14 is a block diagram depicting an exemplary
embodiment of a multithread model in accordance with one
or more aspects of the invention;

US 7,185,309 Bl

3

FIG. 15 is a block diagram depicting an exemplary
embodiment of a multithread system that may be imple-
mented using the multithread model of FIG. 14;

FIG. 16 is a block diagram depicting an exemplary
embodiment of a programming interface for the soft plat-
form architecture described herein; and

FIG. 17 is a block diagram depicting an exemplary
embodiment of a computer suitable for implementing pro-
cesses, methods, and system sections described herein.

DETAILED DESCRIPTION OF THE DRAWINGS

To facilitate understanding of the invention, the descrip-
tion has been organized as follows:

Overview, introduces aspects of the invention and exem-
plary embodiments of their relationships to one another;

Soft Platform, describes a programmable architecture and
associated design tool for implementing a message process-
ing system using an integrated circuit;

Memory Model, describes an application-specific pro-
grammable memory architecture and interconnection net-
work for an integrated circuit;

Multithread Model, describes an inter-process synchroni-
zation mechanism for threads implemented within a config-
urable logic portion of an integrated circuit; and

Programming Interface, describes a programming inter-
face for a design tool embodying a soft architecture for
implementing a message processing system using an inte-
grated circuit.

Overview

One or more aspects of the invention are related to a
configurable and programmable micro-architecture for
implementing message-processing (MP) systems (“soft plat-
form architecture™). As used herein, the term “message”
encompasses packets, cells, frames, data units, and like type
blocks of information known in the art that is passed over a
communication channel. A “message-processing” system is
a system or subsystem for processing messages (e.g., a
packet processing system or a network processing system).
The soft platform architecture is “message-centric” to match
the nature of MP systems. That is, the processing compo-
nents of the MP system go to the messages, as opposed to the
messages coming to the processing components.

Briefly stated, a designer specifies attributes for an MP
system, such as structural and behavioral attributes for
processing components and memory components. For
example, the designer may employ a set of descriptions or
“primitives” that parametrically define the MP system
attributes. The primitives provide an abstract mechanism for
defining the MP system. A design tool embodying the soft
platform architecture may include a programming interface
for generating a logical description or “logical view” of an
MP system based on the designer-specified attributes.

Notably, the logical view includes logical components of
the soft platform architecture configured in accordance with
the designer-specified MP system. In particular, the soft
platform architecture includes a memory model component
and a multithreading component. A physical view of the MP
system may then be generated based on the logical view. The
physical view includes physical components of an integrated
circuit architecture that implement the logical components
of the soft platform architecture. The physical view may
then be processed to generate configuration data for the
integrated circuit to realize the designer-specified MP sys-
tem (e.g., a configuration bitstream for a PLD or mask data
for an ASIC). Thus, the soft platform architecture provides

20

25

30

35

40

45

50

55

60

65

4

a mechanism by which a designer may design an MP system
in an abstract fashion, without knowledge of the particular
physical configuration of the integrated circuit.

One or more aspects of the invention are described with
respect to a programmable architecture for implementing a
message processing system using an FPGA. While the
invention is described with specific reference to an FPGA,
those skilled in the art will appreciate that other types of
programmable logic devices may be used, such as complex
programmable logic devices (CPLDs). In addition, other
types of mask-programmable devices may be used, such as
application specific integrated circuits (ASICs). Those
skilled in the art will appreciate that, if an ASIC is employed
rather than an PLD, then mask data is generated in place of
a configuration bitstream.

FIG. 1 is a block diagram depicting an exemplary embodi-
ment of an FPGA 102 coupled to external memory 150 and
a program memory 120. The external memory 150 may
comprise, for example, synchronous dynamic RAM
(SDRAM), double-data rate SDRAM (DDR SDRAM),
Rambus® RAM (RDRAM), and the like. For purposes of
clarity by example, the memory 150 is referred to as
“external” in that the memory 150 is not part of the FGPA
102. It is to be understood, however, that the external
memory 150 and the FPGA 102, as well as various other
devices, may be integrated onto a single chip to form a single
system-level integrated circuit (referred to as a “system-on-
a-chip” or SoC).

The FPGA 102 illustratively comprises programmable
logic circuits or “blocks”, illustratively shown as CLBs 104,
IOBs 106, and programmable interconnect 108 (also
referred to as “programmable logic™), as well as configura-
tion memory 116 for determining the functionality of the
FPGA 102. The FPGA 102 may also include an embedded
processor block 114, as well as various dedicated internal
logic circuits, illustratively shown as blocks of random
access memory (“BRAM 110”), configuration logic 118,
digital clock management (DCM) blocks 112, and input/
output (I/O) transceiver circuitry 122. Those skilled in the
art will appreciate that the FPGA 102 may include other
types of logic blocks and circuits in addition to those
described herein.

As is well known in the art, the IOBs 106, the CLBs 104,
and the programmable interconnect 108 may be configured
to perform a variety of functions. Notably, the CL.Bs 104 are
programmably connectable to each other, and to the IOBs
106, via the programmable interconnect 108. Each of the
CLBs 104 may include one or more “slices” and program-
mable interconnect circuitry (not shown). Each CLB slice in
turn includes various circuits, such as flip-flops, function
generators (e.g., a look-up tables (LUTs)), logic gates,
memory, and like type well-known circuits. The IOBs 106
are configured to provide input to, and receive output from,
the CLBs 104.

Configuration information for the CLBs 104, the IOBs
106, and the programmable interconnect 108 is stored in the
configuration memory 116. The configuration memory 116
may include static random access memory (SRAM) cells.
The configuration logic 118 provides an interface to, and
controls configuration of, the configuration memory 116. A
configuration bitstream produced from the program memory
120 may be coupled to the configuration logic 118 through
a configuration port 119. The configuration process of FPGA
102 is also well known in the art.

The 1/O transceiver circuitry 122 may be configured for
communication over any of a variety of media, such as
wired, wireless, and photonic, whether analog or digital. The

US 7,185,309 Bl

5

1/0 transceiver circuitry 122 may comprise gigabit or multi-
gigabit transceivers (MGTs). The DCM blocks 112 provide
well-known clock management circuits for managing clock
signals within the FPGA 102, such as delay lock loop (DLL)
circuits and multiply/divide/de-skew clock circuits.

The processor block 114 comprises a microprocessor
core, as well as associated control logic. Notably, such a
microprocessor core may include embedded hardware or
embedded-firmware or a combination thereof for a “hard” or
“soft” microprocessor. A soft microprocessor may be imple-
mented using the programmable logic of the FPGA 102
(e.g., CLBs 104, IOBs 106). For example, a Microblaze™
soft microprocessor, available from Xilinx® of San Jose,
Calif., may be employed. A hard microprocessor may be
implemented using an IBM Power PC, Intel Pentium, AMD
Athlon, or like type processor core known in the art.

The processor block 114 is coupled to the programmable
logic of the FPGA 102 in a well known manner. For
purposes of clarity by example, the FPGA 102 is illustrated
with 12 CLBS, 16 IOBs, 4 BRAMS, 4 DCMS, and one
processor block. Those skilled in the art will appreciate that
actual FPGAs may include one or more of such components
in any number of different ratios. For example, the FPGA
102 may be selected from the Virtex™-II Pro family of
products, commercially available from Xilinx® of San Jose,
Calif.

One or more aspects of the invention include design tools
for designing MP systems, memory systems, and multi-
threading systems. Such design tools may be implemented
using a computer. Notably, FIG. 17 is a block diagram
depicting an exemplary embodiment of a computer 1700
suitable for implementing processes, methods, and design
tool sections described herein. The computer 1700 includes
a central processing unit (CPU) 1701, a memory 1703,
various support circuits 1704, and an I/O interface 1702. The
CPU 1701 may be any type of microprocessor known in the
art. The support circuits 1704 for the CPU 1701 include
conventional cache, power supplies, clock circuits, data
registers, I/O interfaces, and the like. The 1/O interface 1702
may be directly coupled to the memory 1703 or coupled
through the CPU 1701. The I/O interface 1702 may be
coupled to various input devices 1712 and output devices
1711, such as a conventional keyboard, mouse, printer,
display, and the like.

The memory 1703 may store all or portions of one or
more programs and/or data to implement the processes,
methods, and design tool sections described herein.
Although one or more aspects of the invention are disclosed
as being implemented as a computer executing a software
program, those skilled in the art will appreciate that the
invention may be implemented in hardware, software, or a
combination of hardware and software. Such implementa-
tions may include a number of processors independently
executing various programs and dedicated hardware, such as
ASICs.

The computer 1700 may be programmed with an operat-
ing system, which may be OS/2, Java Virtual Machine,
Linux, Solaris, Unix, Windows, Windows95, Windows98,
Windows NT, and Windows2000, WindowsME, and Win-
dowsXP, among other known platforms. At least a portion of
an operating system may be disposed in the memory 1703.
The memory 1703 may include one or more of the following
random access memory, read only memory, magneto-resis-
tive read/write memory, optical read/write memory, cache
memory, magnetic read/write memory, and the like, as well
as signal-bearing media as described below.

20

25

30

35

40

45

50

55

60

65

6

An aspect of the invention is implemented as a program
product for use with a computer system. Program(s) of the
program product defines functions of embodiments and can
be contained on a variety of signal-bearing media, which
include, but are not limited to: (i) information permanently
stored on non-writable storage media (e.g., read-only
memory devices within a computer such as CD-ROM or
DVD-ROM disks readable by a CD-ROM drive or a DVD
drive); (ii) alterable information stored on writable storage
media (e.g., floppy disks within a diskette drive or hard-disk
drive or read/writable CD or read/writable DVD); or (iii)
information conveyed to a computer by a communications
medium, such as through a computer or telephone network,
including wireless communications. The latter embodiment
specifically includes information downloaded from the
Internet and other networks. Such signal-bearing media,
when carrying computer-readable instructions that direct
functions of the invention, represent embodiments of the
invention.

Soft Platform

FIG. 2 is a block diagram depicting an exemplary embodi-
ment of a design tool 200 for designing an MP system for
implementation using an FPGA. The design tool 200 com-
prises an input section 202, a soft platform section 204, and
an FPGA design tool section 206. Briefly stated, the soft
platform section 204 provides a configurable and program-
mable soft platform architecture for implementing MP sys-
tems. An MP system implemented using the soft platform
architecture is mapped onto an FPGA architecture to pro-
duce a physical circuit design. The MP system may be
realized by configuring an FPGA 208 in accordance with the
circuit design. Thus, the soft platform architecture provides
a mapping between a logical, message-centric system design
and a physical, interface-centric system implemented within
the FPGA 208.

Notably, the FPGA circuit design may be “interface-
centric” in that the circuit design is driven by the behavior
at the system interfaces, as opposed to the “processor-
centric” model, where the circuit design is driven by the
behavior of an embedded processor. The interface-centric
circuit design model matches well with the message-centric
style of the soft platform architecture. Placement and usage
of interfaces, memories, and their interconnections dominate
the allocation of FPGA architecture features, and then allo-
cation of functional elements (e.g., programmable logic,
embedded processors) for the process components follow as
a derivative.

More specifically, the input section 202 is coupled to one
or more input devices 210 and a database storing an appli-
cation programming interface (API) (“API database 212”).
The API database 212 includes a set of primitives associated
with structural and behavioral attributes of the soft platform
architecture. Thus, the API provides a “programming inter-
face” for the soft platform architecture. An exemplary
embodiment of a programming interface for a soft platform
architecture is described below in the section entitled “PRO-
GRAMMING INTERFACE.” Using the input devices 210,
a designer may interact with the input section 202 to produce
specification data for an MP system or subsystem if the MP
circuit is part of a larger system (hereinafter referred to as an
“MP system”).

Notably, in one embodiment, a designer may use the
primitives in the API database 212 directly to produce the
MP system specification data for the soft platform architec-
ture. In another embodiment, a designer may design the MP
system using alternate constructions provided by the input

US 7,185,309 Bl

7

section 202. That is, the input section 202 may comprise a
design entry tool specific to the MP domain. Examples of
such MP-specific design-entry tools include Click (available
from The Massachusetts Institute of Technology), Rave
(available from Cloudshield™ of Sunnyvale, Calif.), and
SDL (a telecom standard from ITU-T). The input section
202 may then map the MP system specified using the
alternate constructions onto the primitives in the API data-
base 212 for the soft platform architecture. Thus, the input
section 202 may provide a different level of abstraction than
that provided by the soft platform architecture.

In one embodiment of the invention, the MP system
specification data may comprise program code for program-
matically interacting with the soft platform section 204. The
program code may be callable by an external design tool of
the input section 202. In another embodiment, the MP
system specification data may comprise interpretive descrip-
tions (e.g., descriptions in a textual or binary format) that the
soft platform section 204 may interpret (e.g., an XML
format). In either embodiment, the MP system specification
is used to configure the soft platform architecture.

The soft platform section 204 is coupled to the input
section 202 for receiving the MP system specification data.
The soft platform section 204 is also coupled to a database
storing the features or attributes of the soft platform archi-
tecture (“soft platform database 216”), and a database stor-
ing features or attributes of the architecture of the FPGA 208
(“FPGA database 218”).

The soft platform section 204 includes a first portion 203
for generating a logical description or “logical view” of an
MP system in accordance with the MP system specification.
The logical view is defined in terms of the logical compo-
nents of the soft platform architecture stored in the soft
platform database 216. The soft platform section 204
includes a second portion 205 for generating a physical view
of the MP system. Notably, using information in the FPGA
database 218, the soft platform section 204 maps the logical
view of the MP system defined in terms of the soft platform
architecture onto the architecture of the FPGA 208. The soft
platform section 204 provides FPGA design data as output,
which represents a “physical view” of the MP system in
terms of the architecture of the FPGA 208. Details of the soft
platform architecture are described below with respect to
FIG. 4.

The FPGA design tools section 206 is coupled to the soft
platform section 204 for receiving the FPGA design data.
The FPGA design data may comprise a physical description
of the MP system specified by the designer in terms of the
components and features of the FPGA 208. For example, in
one embodiment, the FPGA design data may comprise a
hardware description language (HDL) representation of the
MP system design (e.g., Very high-speed integrated circuit
description language (VHDL) or Verilog). The FPGA design
tools section 206 processes the FPGA design data to produce
configuration bitstream data. For example, the FPGA design
tools section 206 may comprise various well-known FPGA
design tools, such as a synthesis tool, a map/place/route tool,
like-type tools known in the art. The FPGA design tools
section 206 provides configuration bitstream data as output,
which may be loaded into the FGPA 208.

FIG. 3 is a flow diagram depicting an exemplary embodi-
ment of a process 300 for designing an MP system for
implementation using FPGA. The process 300 may be
performed by the design tool 200 shown in FIG. 2. The
process 300 begins at step 302. At step 304, an MP system
specification is defined using an API associated with a soft
platform architecture. The MP system specification specifies

20

25

30

35

40

45

50

55

60

65

8

attributes of an MP system, such as processing operations
and memory attributes. As described above, the API may be
programmatic (e.g., software function calls) or interpretive
(e.g., XML).

At step 306, a logical view of the MP system is generated
in accordance with the MP system specification. As
described above, the logical view of the MP system is
defined in terms of a soft platform architecture. The logical
components of the soft platform architecture are configured
in accordance with the MP system specification to generate
the logical view of the MP system. The term “logical
components” refers to both the structural and behavioral
attributes of the soft platform architecture, described in more
detail below.

At step 308, the logical view of the MP system is mapped
onto an FPGA architecture to produce FPGA design data.
That is, the logical components comprising the logical view
are linked to physical components of an FPGA and, option-
ally, other devices connected to the FPGA (e.g., external
memories). In one embodiment of the invention, the FPGA
design data comprises an HDL representation of the MP
system design. As described above, the FPGA design data
provides a physical view of the specified MP system in terms
of the architecture of the FPGA. That is, FPGA design data
corresponds to the physical implementation of the logical
view of the MP system on an FPGA device.

At step 310, the FPGA system design is processed to
produce configuration bitstream data. For example, if the
FPGA system design comprises an HDL representation of
the MP system design, the FPGA system design may be
synthesized, mapped, placed, and routed in a well-known
manner to produce bitstream data for configuring an FPGA.
At step 312, the configuration bitstream data is loaded into
an FPGA to realize the MP system specified at step 304. The
process 300 ends at step 314.

FIG. 4 is a block diagram depicting an exemplary embodi-
ment of a soft platform architecture 400 in accordance with
one or more aspects of the invention. The soft platform
architecture 400 comprises a messages in system (MIS)
component 402, a process component 403, and a stored
system state (SSS) component 410. The MIS component
402, the process component 403, and the SSS component
410 are logical components with no implied physical imple-
mentations. The physical implementations of the MIS com-
ponent 402, the process component 403, and the SSS
component 410 may be programmable, static, or partially
programmable and partially static. The programmable por-
tion of any of the MIS component 402, the process compo-
nent 403, and the SSS component 410 may be conveyed via
API primitives that define specification data generated by a
designer.

Notably, the soft platform architecture 400 includes a
programming/control interface 414 and a debug/test/monitor
interface 416. The programming/control interface 414 con-
veys the data for configuring the programmable portions of
the soft platform architecture 400. The programming/control
information conveyed via the programming/control inter-
face 414 comprises the structural and behavioral information
related to the MIS component 402, the process component
403, and the SSS component 410. An exemplary embodi-
ment of a programming interface to the soft platform archi-
tecture 400 is described below in the section entitled “PRO-
GRAMMING INTERFACE.” The debug/test/monitor
interface 416 may be used during the design and implemen-
tation of an MP system defined in terms of the soft platform

US 7,185,309 Bl

9

architecture 400. The interfaces 414 and 416 are illustrative,
as there may be a single shared interface, or more than two
interfaces.

The MIS component 402 is the logical storage point for all
messages currently within the system implemented using the
soft platform architecture 400. The MIS component 402
includes an interface 412 to the enclosing environment 450
allowing for the input and output of messages. For example,
the soft platform architecture 400 may be configured to
produce an internet protocol (IP) packet router. The MIS
component 402 may be configured to store all IP packets
currently in flight through the router. The interface 412 may
be one or more ports by which the router is connected to a
physical network.

The MIS component 402 may be physically implemented
using a centralized memory device, a plurality of distributed
memory devices, or a combination thereof. In addition, the
types, sizes, and interconnections of the physical memory
elements, as well as the interface to such physical memory
elements, are programmable through configuration of the
MIS component 402. An exemplary embodiment of a logical
memory configuration that may be used as the MIS com-
ponent 402 is described below in the section entitled
“MEMORY MODEL.”

The process component 403 comprises one or more
processes that may be classified as fine grain operations
processes (FOPs) 404, coarse grain operations processes
(COPs) 406, or perimeter interface processes (PIPs) 408. In
addition, the process component 403 includes an inter-
process synchronization component 418. The FOPs 404,
COPs 406, and PIPs 408 operate on messages stored within
the MIS component 402. The term “process,” as used herein,
denotes a concurrent agent for operating on information
stored within the MIS component 402. The term “thread” is
used to denote an instance of a process.

Notably, each single execution of a process within the
process component 403 is associated with a message stored
in the MIS component 402 through a message context 405.
A process in the process component 403 may be physically
implemented directly in programmable logic of an FPGA, or
in a soft or hard embedded processor of an FPGA. In one
embodiment of the invention, the message context 405 may
be implemented using a data counter (DC) component 407.
The DC component 407 points to the current position in the
current message being operated on by a particular process in
the process component 403. As the process executes, the DC
component 407 may be updated, either automatically to
advance to the next position in a message, or by execution
of programmed “data jumps.” In essence, the process moves
over the message. The DC component 407 may be physi-
cally implemented using a memory element within the
FPGA capable of storing an address associated with the
location of a message in the memory of the MIS component
402. Depending on the memory organization of the MIS
component 402, the DC component 407 may be a register,
a BRAM, or an external RAM.

The processes of the process component 403 include a
common interface. The inter-process communication com-
ponent 418 may utilize the common interface to allow
interaction between processes of the process component
403. Such interactions may include, for example, creating or
destroying a process or passing data to another process. The
inter-process communication component 418 provides for a
control flow in the processing of a message. At a micro-
scopic level, the inter-process communication component
418 is capable of providing a control flow within a single
process’s execution. At a macroscopic level, the inter-

20

25

30

35

40

45

50

55

60

65

10

process communication component 418 is capable of pro-
viding a control flow from one process’s execution to
another process’s execution. An exemplary embodiment of
a multithread model that may be used as the inter-process
communication component 418 is described below in the
section entitled “MULTITHREAD MODEL.”

A FOP 404 is the basic programmable unit for message
processing. A FOP 404 performs a sequence of steps on a
message stored within the MIS component 402. At each
step, a set of concurrent operations are performed. A FOP
404 may be associated with a DC component 407. After each
step, the DC component 407 may be incremented, or a data
jump operation performed, such that the FOP 404 accesses
a new portion of the message. The steps, as well as the
operations performed during each step, may be program-
mable, static, or partially programmable and partially static
in their definition. Examples of operations include, inspect-
ing a field (e.g., a 16-bit header ficld) of a message, or
performing simple arithmetic (e.g., adding one to a 16-bit
header field) on a message.

A FOP 404 may be implemented within an FPGA using
programmable logic. For example, a FOP may be imple-
mented as a finite state machine (FSM) configured within
the programmable logic of the FPGA. Alternatively, a FOP
may be implemented on an embedded processor within an
FPGA. For example, a FOP may be implemented as an
operating system thread executed by the embedded proces-
sor. The physical implementation of a FOP 404 may be
programmable, static, or partially programmable and par-
tially static in its definition.

A COP 406 is used to incorporate a function block to
perform a message processing operation. A function block
may comprise a circuit or subsystem defined outside the
context of the soft platform architecture 400. For example,
the function block may comprise a reusable intellectual
property (IP) core for an FPGA. A COP 406 provides a
programmable adapter between the interface of the function
block and the common interface of the process component
403. A COP 406 may be started, stopped, or interrupted by
another process of the process component 403.

A COP 406 may be defined statically and be in existence
permanently. Alternatively, a COP 406 may be created and
destroyed dynamically to allow dynamic reconfiguration of
the function blocks associated therewith. For example, a
COP 406 may be used to incorporate a function block for
compression or encryption of all or part of a message stored
in the MIS component 402. A COP 406 may be associated
with a DC component 407, which points to the beginning of
the message in the MIS component 402 to be processed by
the COP 406.

A PIP 408 is concerned with enabling the movement of a
message to and from soft platform architecture 400. In one
embodiment of the invention, a PIP 408 may be used to
incorporate a function block, similar to a COP 406. The
function block associated with a PIP 408 may comprise a
circuit or subsystem defined outside the context of the soft
platform architecture 400 that is specifically geared to
perform I/O functions. In another embodiment of the inven-
tion, a PIP 408 may be implemented as a FSM in program-
mable logic of the FPGA.

For example, a PIP may be used to receive or transmit
successive words of a message over an interface using a
protocol defined for the interface. For example, a PIP may
act as a smart adapter for the Xilinx® LocalLink interface to
a networking core or the interface to a Gigabit MAC core.
A PIP may also communicate with other system components
implemented within the FPGA.

US 7,185,309 Bl

11

The SSS component 410 may be used to store state
information associated with the processes of the process
component 403. For example, the SSS component 410 may
be used to store a message context 405 for a FOP 404. The
SSS component 410 may be physically implemented using
a centralized memory device, a plurality of distributed
memory devices, or a combination thereof.

Memory Model

FIG. 5 is a block diagram depicting an exemplary embodi-
ment of a design tool 500 for designing a memory subsystem
for implementation using an FPGA. The design tool 500
comprises an input section 502 and a memory model section
504. The memory model section 504 provides a configurable
and programmable memory model for implementing a
memory subsystem using an FPGA and, optionally, other
memories connected to an FPGA.

In particular, the input section 502 is coupled to a database
that stores an API associated with the memory model,
referred to herein as the memory interconnection description
language (MIDL) library 506. The MIDL library 506 com-
prises a set of primitives for defining structural and behav-
ioral attributes of the memory model. Thus, the MIDL
library 506 provides a programming interface for the
memory model. A designer may interact with the input
section 502 to produce specification data for a memory
subsystem. The designer may work directly with the MIDL
library 506, or may work indirectly with the MIDL library
506 through an alternative design tool defined within the
input section 502. The memory subsystem specification data
may be programmatic or may be interpretive (e.g., XML).
An example of an MIDL specification for a 32-bit wide
memory constructed from two 16-bit wide memories, which
are in turn mapped to physical BRAM in an FPGA, is shown
in Appendix A.

The memory model section 504 is coupled to the input
section 502 for receiving the memory model specification.
The memory model section 504 is also coupled to a database
that stores the features or attributes of the memory model
(“memory model database 508”), and a database that stores
the memory attributes of an FPGA and external memories
associated therewith (“FPGA memory database 510”). The
memory model section 504 includes a first portion 503 for
generating a logical view of a memory subsystem in accor-
dance with the memory subsystem specification. The logical
view is defined in terms of the logical components of the
memory model stored in the memory model database 508.

The memory model section 504 may include an analysis/
optimization portion 512 for analyzing and optimizing the
logical view of the memory subsystem in accordance with
constraint data provided by a designer. The memory model
section 504 further includes a second portion 505 for gen-
erating a physical view of the memory system based on the
logical view. Notably, using information in the FPGA
memory database 510, the memory model section maps the
logical view of the memory subsystem onto the physical
memory components associated with an FPGA. The
memory model section 504 provides FPGA design data as
output.

FIG. 6 is a block diagram depicting an exemplary embodi-
ment of a memory model 600 in accordance with one or
more aspects of the invention. The memory model 600
comprises a memory element 602 having a memory inter-
face 604 and a memory interconnection interface 606. The
memory element 602 is a logical component with no implied
physical implementation. That is, the memory element 602
may comprise one or more physical memories, disposed

20

25

30

35

40

45

50

55

60

65

12

within an FPGA and/or external thereto. The memory inter-
face 604 is configured to provide communication between
the memory element 602 and a computational element 608
(e.g., one or more threads). For example, the memory
element 602 may be configured to store messages, and the
computational element may access the messages through the
memory interface 604 for processing. The memory inter-
connection interface 606 is configured to provide commu-
nication between the memory element 602 and an intercon-
nection 610. The interconnection 610 may comprise a portal
to an I/O interface (e.g., a Gigabit Ethernet MAC core on the
FPGA) or to another memory element (either within the
FPGA or external to the FPGA). For example, the memory
element 602 may be configured to store messages, and the
interconnection may receive and transmit messages to and
from the memory-interconnection interface 606.

The memory model 600 is characterized by a “memory
architecture” and a “memory-interconnection architecture.”
The memory architecture pertains to the size, type, and
topology of one or more memory circuits comprising the
memory element 602. The memory-interconnection archi-
tecture pertains to the type, bus width (e.g., number of
wires), and topology of interconnection (e.g., crossbar) of
the one or more memory circuits comprising the memory
element 602. In general, with respect to the memory model
600, the term “interface” imparts knowledge related to the
protocols that must be adhered to for the particular interac-
tion, whereas the term “architecture” imparts knowledge
related to the critical path that particular data follows within
the memory model 600.

The memory and interconnection architectures of the
memory model 600 may be defined by the physical location
of'the memory circuits used to implement the model, as well
as the logical configuration of the interface to such memory
circuits. For example, the memory may be physically cen-
tralized (i.e., a single physical memory circuit), or several
memory circuits may be physically distributed. The memory
circuit(s) used to implement the memory model 600 may be
disposed within the FPGA (e.g., any combination of on-chip
BRAMs, LUT-based RAMs, and shift registers), disposed
external to the FPGA (e.g., external SDRAMs, DDR
SDRAMs, and RDRAMs), or a combination thereof. In
addition, the interface to such memory circuit(s) may be
logically centralized (e.g., a unified programming interface)
or logically distributed (e.g., multiple logical interfaces).

In light of the various physical and logical configurations
for the memory and interconnection architectures, various
logical schemes for storing messages may be implemented
using the memory model 600. In one embodiment, all
messages may be stored within a single memory (e.g., a
queue of messages in a memory) (“uniform message stor-
age”). Alternatively, different messages may be allocated
over different memories (“interleaved message storage”). In
yet another alternative, each message may be physically
allocated over different memories (“striped message stor-
age”). In another embodiment, each message may be logi-
cally allocated over different memories (“separated message
storage”). FIGS. 9 and 10 depict examples of memory
subsystems illustrating exemplary configurations for the
memory and interconnection architectures with respect to
the storage of messages in a system. Those skilled in the art
will appreciate that many other configurations for the
memory and interconnection architectures may be employed
in accordance with the above attributes, of which FIGS. 9
and 10 are examples.

In particular, FIG. 9 is a block diagram depicting an
exemplary embodiment of a memory subsystem 900 that

