
Refactoring Router Software to

Minimize Disruption

Eric Robert Keller

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Electrical Engineering

Adviser: Jennifer Rexford

November 2011

c Copyright by Eric Robert Keller, 2011.

All rights reserved.

Abstract

Network operators are under tremendous pressure to make their networks highly

reliable to avoid service disruptions. Yet, operators often need tochange the network

to upgrade faulty equipment, deploy new services, and install new routers. Unfortu-

nately, changes cause disruptions, forcing a trade-o� between the bene�t of the change

and the disruption it will cause. This disruption comes from the very design of the

routers and routing protocols underlying the Internet's operation. First, since the

Internet is composed of many smaller networks, in order to determine a path between

two end points, a distributed calculation involving many of the networks is necessary.

Therefore, during any network event that requires a calculation,there will be a pe-

riod of time when there are disagreements among the routers in thevarious networks,

potentially leading to the situation where there is no path available between some

end points. Second, selecting routes involves computations across millions of routers

spread over vast distances, multiple routing protocols, and highly customizable rout-

ing policies. This leads to very complex software systems. Like any complex software,

routing software is prone to implementation errors, orbugs. Given these disruptions,

operators must make tremendous e�ort to minimize their e�ect. Not only does this

lead to a lot of human e�ort, it also increases the opportunity for mistakes in the

con�guration { a common cause of outages.

We believe that with a refactoring of today's router software we can make the

network infrastructure more accommodating of change, and therefore more reliable

and easier to manage.

First, we tailor software and data diversity (SDD) to the unique properties of

routing protocols, so as to avoid buggy behavior at run time. Our bug-tolerant router

executes multiple diverse instances of routing software, and usesvoting to determine

the output to publish to the forwarding table, or to advertise to neighbors. We

designed and implemented a router hypervisor that makes this parallelism transparent

iii

to other routers, handles fault detection and booting of new router instances, and

performs voting in the presence of routing-protocol dynamics, without needing to

modify software of the diverse instances.

Second, we argue that breaking the tight coupling between the physical and logical

con�gurations of a network can provide asingle, general abstraction that simpli�es

network management. Speci�cally, we propose VROOM (Virtual ROuters On the

Move), a new network-management primitive where virtual routers can move freely

from one physical router to another. We present the design, implementation, and

evaluation of novel migration techniques for virtual routers with either hardware or

software data planes.

Finally, we introduce the concept of router grafting. This capabilityallows an

operator to rehome a customer with no disruption, compared to downtimes today

measured in minutes. With our architecture, this rehoming can be performed com-

pletely transparently from the neighboring network { where the customer's router is

not modi�ed and is unaware migration is happening.

Together, these three modi�cations enable network operators to perform the

desired change on their network without (i) possibly triggering bugsin routers that

causes Internet-wide instability, (ii) causing unnecessary network re-convergence

events, (iii) having to coordinate with neighboring network operators, or (iv) needing

an Internet-wide upgrade to new routing protocols.

iv

Acknowledgements

First and foremost, I would like to thank my family. To my wife, Kristen, I might

have been crazy to do this, but you were there supporting me every step of the way.

To my children, Braden and Devin, you amaze me each and every day.Maybe you'll

read this one day when you're older and understand what I was doingall those years.

And to my mom, your strength helped push me to �nish what I started.

I will be forever indebted to my advisor, Jennifer Rexford. She gave me the space

I needed to be creative, the guidance I needed to do great work, and provided me

with the tools to be a great researcher for life. I cannot �nd the words to express how

amazing of a person she is. To work with her was such a great experience and I feel

very fortunate that I had this opportunity. I can only hope to help future students

like she has helped me.

I would like to thank my committee for their great help in completing thisdis-

sertation { Kobus van der Merwe, Matthew Caesar, Ruby Lee, andMung Chiang.

Kobus and Matt were also signi�cant contributors and mentors in the technical direc-

tion of this dissertation (Kobus on the VROOM and Grafting work andMatt on the

Bug-Tolerant Router work). Their insight, knowledge, and guidance were invaluable.

Ruby and I worked closely together on research that falls outside of the scope of this

dissertation. She taught me a great deal about security and has gotten me very exited

about the �eld.

I would also like to thank other direct contributors to this dissertation { Minlan

Yu, Yi Wang, and Michael Schapira. Not only did collaborating with them directly

help this dissertation, but they are great people and it was a pleasure working with

each of them.

I would also like to thank Andy Bavier, Mike Freedman, and Rob Harrison for

their incredible feedback on the many things I've worked on at Princeton. I credit

Andy for teaching me a lot about how to write a paper. And I would similarly like

v

to thank Jakub Szefer for our work together on NoHype. We pushed though and

achieved something great with that.

I came to Princeton after seven years working for Xilinx. I owe a lot to Phil James-

Roxby (who actually proof read all of my papers at Princeton), Gordon Brebner, and

Steve Guccione for being great friends and mentors, even after Ileft. Having three

great people to lean on over the years helped a lot (from deciding to go back to

school, to applying, to pushing through those middle years of the Ph.D. when the

initial excitement has worn o� but there is still a long time left).

Similarly, grad school wouldn't be grad school without my fellow students. I

would like to thank my friends in the electrical engineering and computer science

departments and in particular the rest of the Cabernet group (past and present). It

was great fun knowing them and learning from them.

And �nally, I would like to thank Intel for the fellowship during my �nal year.

vi

I dedicate this dissertation to the memory of my dad, Robert Keller.

He was the one who introduced me to computers at a young age { going all the way

back to the TRS-80. I wish he could have been here to see me �nish, but I'm

thankful he at least got to see me start.

vii

Contents

Abstract . iii

Acknowledgments. v

List of Tables . xiii

List of Figures . xiv

1 Introduction 1

1.1 Change Happens. 2

1.1.1 Equipment Failure . 3

1.1.2 Planned Maintenance of Equipment and Software. 4

1.1.3 Updated Inter-domain Policy and Connectivity 4

1.1.4 Changes to Optimize Resource Utilization. 6

1.1.5 Service Deployment and Evolution 7

1.2 Change is Painful. 8

1.2.1 Because Routing Software is Distributed. 8

1.2.2 Because Routing Software is Complex. 9

1.2.3 Because Routing Software is Con�gurable. 11

1.3 Refactoring Router Software. 12

1.4 Router Trends. 15

2 Hiding Routing Software Bugs from Adjacent Routers with th e Bug-

Tolerant Router 20

viii

2.1 Introduction . 20

2.1.1 Challenges in dealing with router bugs. 20

2.1.2 The case for diverse replication in routers. 22

2.1.3 Designing a Bug-Tolerant Router 23

2.2 Software and Data Diversity in Routers. 24

2.2.1 Diversity in the software environment. 25

2.2.2 Execution environment diversity. 29

2.2.3 Protocol diversity . 30

2.3 Bug Tolerant Router (BTR) . 31

2.3.1 Making replication transparent 31

2.3.2 Dealing with the transient and real-time nature of routers . . 34

2.4 Router Hypervisor Prototype . 36

2.4.1 Wrapping the routing software. 37

2.4.2 Detecting and recovering from faults 38

2.4.3 Reducing complexity . 39

2.5 Evaluation . 41

2.5.1 Voting in the presence of churn. 42

2.5.2 Processing overhead. 47

2.5.3 E�ect on convergence. 48

2.6 Discussion. 50

2.7 Related Work . 52

2.8 Summary . 54

3 Decoupling the Logical IP-layer Topology from the Physica l Topol-

ogy with VROOM 55

3.1 Introduction . 55

3.2 Background . 59

3.2.1 Flexible Link Migration . 59

ix

3.2.2 Related Work . 61

3.3 Network Management Tasks. 63

3.3.1 Planned Maintenance. 63

3.3.2 Service Deployment and Evolution 64

3.3.3 Power Savings. 65

3.4 VROOM Architecture . 66

3.4.1 Making Virtual Routers Migratable 67

3.4.2 Virtual Router Migration Process 69

3.5 Prototype Implementation . 73

3.5.1 Enabling Virtual Router Migration 74

3.5.2 Realizing Virtual Router Migration 77

3.6 Evaluation . 79

3.6.1 Methodology . 79

3.6.2 Performance of Migration Steps. 81

3.6.3 Data Plane Impact . 82

3.6.4 Control Plane Impact. 86

3.7 Migration Scheduling . 88

3.8 Summary . 89

4 Seamless Edge Link Migration with Router Grafting 91

4.1 Introduction . 91

4.1.1 A Case for Router Grafting 92

4.1.2 Challenges and Contributions. 94

4.2 BGP Routing Within a Single AS . 97

4.2.1 Protocol Layers: IP, TCP, & BGP 97

4.2.2 Components: Blades, Routers, & ASes. 99

4.3 Router Grafting Architecture . 100

4.3.1 Copying BGP Session Con�guration 101

x

4.3.2 Exporting & Resetting Run-Time State. 103

4.3.3 Migrating TCP Connection & IP Link 105

4.3.4 Importing BGP Routing State 106

4.4 Correct Routing and Forwarding. 108

4.4.1 Control Plane: BGP Routing State 108

4.4.2 Data Plane: Packet Forwarding. 110

4.5 BGP Grafting Prototype . 111

4.5.1 Con�guring the Migrate-To Router 112

4.5.2 Exporting Migrate-From BGP State 112

4.5.3 Exporting Migrate-From TCP State. 113

4.5.4 Importing the TCP State . 113

4.5.5 Migrating the Layer-Three Link 114

4.5.6 Importing Routing State . 115

4.6 Optimizations for Reducing Impact 115

4.6.1 Reducing Impact on eBGP Sessions. 115

4.6.2 Reducing Impact on iBGP Sessions. 117

4.6.3 Eliminating Processing Entirely 118

4.7 Performance Evaluation . 119

4.7.1 Grafting Delay and Overhead 119

4.7.2 Optimizations for Reducing Impact 121

4.8 Tra�c Engineering with Grafting . 124

4.8.1 Tra�c Engineering Today . 124

4.8.2 Migration-Aware Tra�c Engineering 125

4.8.3 Practical Considerations. 128

4.8.4 The Max-Link Heuristic . 129

4.8.5 Experimental Results on Internet2 130

4.8.6 Migration Improves Network Utilization 131

xi

4.8.7 Frequent Migration is Not Necessary. 134

4.8.8 Only a Fraction of Links Need to be Migrated. 135

4.9 Related Work . 137

4.10 Summary . 139

5 Conclusion 140

5.1 Summary of Contributions . 140

5.2 A Uni�ed Architecture . 143

5.3 Future Work . 146

5.3.1 Monitoring in Addition to Voting for a Bug-Tolerant Router . 146

5.3.2 Hosted and Shared Network Infrastructure with VROOM. . . 146

5.3.3 Router Grafting for Security 147

5.4 Concluding Remarks . 148

Bibliography 149

xii

List of Tables

2.1 Example bugs and the diversity that can be used to avoid them.. . . 26

3.1 The memory dump �le size of virtual router with di�erent numbers of

OSPF routes . 82

3.2 The FIB repopulating time of the SD and HD prototypes. 82

3.3 Packet loss rate of the data tra�c, with and without migration tr a�c 85

4.1 Summary of notation used in model of tra�c engineering with migration.126

4.2 Comparison of the improvement over the original topology optimized

for routing only when performing grafting at di�erent intervals (over 7

days tra�c). 135

xiii

List of Figures

1.1 Generic diagram of a router design.. 3

1.2 Generic network of networks consisting of end users and autonomous

systems. 5

1.3 Generic network consisting of routers and links.. 7

1.4 Router software architecture.. 10

1.5 Router software refactoring. 18

1.6 Router trends.. 19

2.1 Architecture of a bug-tolerant router. 32

2.2 Implementation architecture. 37

2.3 E�ect of bug duration on fault rate, holding bug interarrival times �xed at

1.2 million seconds. 43

2.4 E�ect of bug interval on fault rate, holding bug duration �xed at 600 sec-

onds. 43

2.5 E�ect of voting on update overhead. 46

2.6 E�ect of convergence time threshold. 46

2.7 BTR pass-through time. 48

2.8 Network-wide simulations, per-router convergence delay distribution. . . 49

3.1 Link migration in the transport networks 59

3.2 The architecture of a VROOM router 67

xiv

3.3 VROOM's novel router migration mechanisms (the times at the bottom

of the sub�gures correspond to those in Figure 3.4). 67

3.4 VROOM's router migration process. 69

3.5 The design of the VROOM prototype routers (with two types of data

planes) . 74

3.6 The diamond testbed and the experiment process. 79

3.7 The Abilene testbed . 81

3.8 Virtual router memory-copy time with di�erent numbers of routes . . 81

3.9 Delay increase of the data tra�c, due to bandwidth contention with

migration tra�c . 85

4.1 Migration protocol layers. 97

4.2 Migrating the session with X between route processor blades (from

RP1 to RP2). 100

4.3 Migrating session with A between routers (from B to C).. 101

4.4 Router grafting mechanisms { migrating a session with Router A (not

shown) from router Migrate-from to router Migrate-to. The b oxes marked

bgpd and network stack are the software programs. The boxes marked

RIB A , conf ig A , and T CPA are the routing, con�guration, and TCP state

respectively. 102

4.5 A topology where AS 200 has migrate-from router A, migrate-torouter

B, internal router F, and external routers C, D, and G, and remote

end-point E. 107

4.6 The router grafting prototype system.. 111

4.7 BGP session grafting time vs. RIB size.. 120

4.8 The CPU utilization at the migrate-to router during migration, with

a 200k pre�x RIB. 121

4.9 Updates sent as a result of migration. 122

xv

4.10 Network model for tra�c engineering with migration. 126

4.11 Evaluation of max-link for a single 5-minute period.. 132

4.12 Evaluation of max-link over 7 days of tra�c { time-series.. 134

4.13 Evaluation of max-link over 7 days of tra�c { cumulative distribut ion

function. 134

4.14 Fraction of tra�c each user node sends in an example 5-minute period. 136

4.15 Cumulative distribution function of the number of links that needto

be migrated during each interval over 7 days of tra�c (2016 5-minute

intervals). Shown are three lines corresponding to di�erent thresholds

{ only links in the top X% of tra�c are migrated. 137

5.1 Uni�ed architecture. 143

xvi

Chapter 1

Introduction

The Internet has become an integral part of our lives. Not only do many of us have

high speed connections at our homes, we also have data connections on our mobile

devices as well as work at businesses that provide or rely on software accessible across

a network. In order to be able to visit a website, use a web service, or use any dis-

tributed software, the underlying infrastructure must provide reachability, and more

speci�cally the Internet as a whole must provide global reachability {i.e., any net-

worked device can communicate with any other networked device, so long as those

networked devices are not explicitly blocking the communication. To provide this

global reachability, the elements in the network infrastructure (i.e., the routers) com-

municate with one another to determine the paths to take to reacheach destination.

Any change to the underlying infrastructure, such as adding new equipment or per-

forming maintenance on the existing equipment, causes the routers to determine a

new set of paths. Given the expansiveness of the Internet, changes are continually

occurring. Not only do these changes cause transient disruptionswhile new paths are

determined but they can also cause longer term disruptions where some destinations

are unreachable for an extended period. For the most part, the current Internet does

a reasonably good job at minimizing disruptions thanks to the tirelesse�ort of the

1

many network operators. Moving forward, this task will be increasingly di�cult as

(i) the size of the Internet grows, and (ii) applications which have more signi�cant

demands in terms of availability, such as remote health care and a smart power grid,

become more common. We believe that with a refactoring of today's router soft-

ware we can make the network infrastructure more accommodating of change, and

therefore more reliable and easier to manage. In this chapter we �rst present some

background on the network management tasks necessary to operate a network (Sec-

tion 1.1) and the disruption that the associated changes in the network infrastructure

can cause (Section1.2). We then detail our proposal to refactor router software in

order to accommodate these changes without disruption (Section1.3). We wrap up

with a discussion of some recent trends in router design that enablethis refactoring

that is seemingly impossible to realize in practice (Section1.4).

1.1 Change Happens

To many, the Internet can be represented as a big cloud on a diagram connecting

end users of some service (e.g., a web site) to the servers that host that service. Of

course, in reality, the Internet is a federation of thousands of independently controlled

networks. To determine how to reach a particular destination, thenetwork elements

known as routers essentially communicate with one another (both within the same

network and between neighboring networks) to disseminate information about avail-

able paths.

These routers are in constant communication as the Internet is constantly chang-

ing. Each individual network often undergoes some changes duringthe normal course

of operation. To understand the di�erent types of change, in thissection, we overview

several reasons for change.

2

1.1.1 Equipment Failure

As routers are physical, electronic equipment, the components within them are sus-

ceptible to failure. Routers have several important components,as shown in Figure

1.1. The interface cards have the connectors to the actual cables along with cus-

tom hardware to process each packet (e.g., decide which output port to forward the

packet on). The switching fabric, which is many times multiple cards, provide a high

bandwidth and low latency connection between each of the line cards. The route

processors run the software that computes the routing decisions such as determining

the paths that should be taken through the network. There are commonly multiple

route processors in order to handle the processing load required.Of course there are

additional required components such as power supplies and fans. Failure of those,

such as through a power outage, will cause the router to fail. Finally, the cables

connecting routers together, either electrical or optical, can also fail. Here the failure

is more likely in terms of physical damage (e.g., a cut) to the cable either due to

weather, construction, or vandals.

Figure 1.1: Generic diagram of a router design.

3

1.1.2 Planned Maintenance of Equipment and Software

Planned maintenance is a fact of life for network operators. Many times this comes

in the form of an upgrade to the network or network components.In order to keep

the network up-to-date, network operators routinely upgradethe routing software or

patch the �rmware in the interface cards to include the latest bug �xes and features.

They may also need to add routers to keep up with growth or replaceolder equipment

with newer versions. Planned maintenance may also come in the form of a preventa-

tive measure to address a possible problem before it arises and causes more signi�cant

disruption. If components are showing signs of failure, such as dueto increased error

rates, operators can replace the individual components in the modularly designed

routers.

1.1.3 Updated Inter-domain Policy and Connectivity

Beyond failure and maintenance of the equipment, change comes from managing the

operation of the network. As illustrated in Figure1.2, the Internet is composed of a

network of networks { each is known as an autonomous system (AS) and is run by

a di�erent party. Through routing protocols, these networks exchange information

about the availability of paths so that the end users (clients, shownas home users,

and servers, shown as data centers) spread throughout the Internet can communicate

with one another. For example, AS5 will announce to its neighbors (AS1 and AS4)

that they can go through AS5 to reach the block of IP addresses owned by data center

A. This information will propagate throughout the network and eventually reach AS6

where it will know a path by which its customers (the home users) canreach the web

service running in data center A.

By con�guring the individual routers, network operators can specify policies about

which paths are preferred and what information should not be told to speci�c neigh-

boring networks. For example, AS4 might be a paying customer of AS2, so AS4 might

4

not tell AS2 that AS2 can reach data center A through AS4. Each change in policy

is a change that can have Internet wide impact (or at least, impact the neighboring

networks).

In managing the network, it may become necessary or highly desirable to change

which internal edge router a given neighboring network connects to, or even which

route processor within a router handles the routing session. This might be for load

balancing purposes where one router is overloaded, so the network operator changes

the router (or route processor) which handles the routing session with the neighboring

network. Such changing of edge routers might alternatively be simply to support a

customer request. Networks consist of a heterogeneous collection of routers, both in

terms of vendor and in terms of model. As such, not all routers support the same

features. If an existing customer changes some requirements, such as requesting a

new quality of service feature, that is not supported on the edge router it is currently

connected to, network operators must change the handling of that connection to

another router.

Figure 1.2: Generic network of networks consisting of end users and autonomous
systems.

5

1.1.4 Changes to Optimize Resource Utilization

Network operators must also manage the resources within their own network (e.g.,

the available bandwidth of links, compute power of routers, and electric power of

network operation centers). Similar to determining paths throughout the Internet,

routing protocols are also used within one network to determine paths between ingress

and egress points. For example, in the example network in Figure1.3, to reach

destination dest1 from router A, a routing protocol might decide to follow the path

A! C! D. Routing decisions can also be based on more than simply the shortest

distance. Tra�c engineering is the act of recon�guring the network to optimize the

ow of tra�c, to minimize congestion. Today, tra�c engineering invo lves adjusting

the routing-protocol parameters to coax the routers into computing new paths that

better match the o�ered tra�c. For example, if the link between C and D is congested,

a network operator might prefer to re-route some of that tra�c to follow C! B! D

instead of C! D directly.

In addition to making tra�c ow more e�ciently within the network, op erators

can take advantage of the mostly predictable variations in tra�c volumes in order to

save power. It was reported that in 2000 the total power consumption of the estimated

3.26 million routers in the U.S. was about 1.1 TWh (Tera-Watt hours) [91]. This

number was expected to grow to 1.9 to 2.4TWh in the year 2005 by three di�erent

projection models [91], which translates into an annual cost of about 178-225 million

dollars [81]. These numbers do not include the power consumption of the required

cooling systems. However, today's routers are surprisingly power-insensitive to the

tra�c loads they are handling|an idle router consumes over 90% of the power it

requires when working at maximum capacity [31]. Instead, operators must shut o�

some routers during periods of lower tra�c in order to save power.To make the tra�c

that is handled by the router that is being shut down ow through a di�erent router,

6

the operator needs to con�gure the routers in a similar manner as isdone with tra�c

engineering.

Figure 1.3: Generic network consisting of routers and links.

1.1.5 Service Deployment and Evolution

Deploying new services, like IPv6 or IPTV, is yet another reason forchanges to net-

works. Here, ISPs usually start with a small trial running in a controlled environment

on dedicated equipment, supporting a few early-adopter customers. This is to ensure

that (i) the new services do not adversely impact existing services,and (ii) the neces-

sary support systems are in place before services can be properlysupported1. As the

service moves past the initial test phase and into wider deployment,the ISP will need

to restructure their test network, or move the service onto a larger network to serve

a larger set of customers. This roll-out is a substantial change to the network as it

e�ectively requires merging the con�gurations of the routers on one network into the

routers on another network and resolving any conicts that arise. Not only are the

con�gurations merged, but the service is also expanded to be run on more routers,

which require new con�gurations.

1Support systems include con�guration management, service monitoring, provisioning, and
billing.

7

1.2 Change is Painful

Whether it's a change in topology or a change in policy/preferences,whenever a

change does occur, that information must get disseminated throughout the Internet.

This is achieved through routing protocols, which are realized in the form of software

running on each router. Here, complexity comes from (i) the distributed (in terms of

many nodes working together to come to an agreement) and decentralized (in terms

of authority) nature of inter-domain routing, (ii) the substantial software running on

each router realizing these protocols, and (iii) the con�gurability ofthis software in

order to support a wide variety of situations. Because of this complexity, change is

painful.

1.2.1 Because Routing Software is Distributed

Focusing on a single routing protocol, the border gateway protocol (BGP) is the

protocol used between networks under di�erent administrative control (i.e., the au-

tonomous systems) in order to exchange available routes. Each route indicates some

properties about the path to the destination, such as which sequence of autonomous

systems will be traversed by tra�c taking that route. At its core, there are two prim-

itive update messages: (i) announce the availability of a path to a given destination,

and (ii) withdraw the availability of a path to a given destination2.

When a router receives an update, that indicates that the state of the network has

changed. That router will re-run its own decision process to determine the impact

on routes that it has chosen to use. If there is any change, the router will notify its

neighbors. They, in turn will do the same thing. Where this causes a problem is that

the changes they (or neighbors further down the line) make may a�ect the decisions

2Subsequent announcements about a previously announced pre�xe�ectively replaces the previous
announcement { only the most recent announcement for a particular destination is valid.

8

being made at this router. Therefore, as it is a distributed decision making process,

there will be a period of time when there is disagreement within the network.

When this occurs, such issues as black holes and loops occur. A blackhole is

when the routes used by one network sends data tra�c to another network thinking

that network has a path to the destination. The black hole occurs when that network

does not know a path to the destination, so it drops the tra�c. Loops are where data

tra�c continuously traverses the same networks without reaching the destination.

For example, network A thinks the path to the destination goes through Network B,

but B thinks the path to the destination goes through A. So, A sends its tra�c to B,

who sends the tra�c to A, and the tra�c keeps going around.

An added complication is that it takes time to process each change. In order to

not overwhelm the routers' processing capabilities, the use of timers has become com-

monplace. For example, the MinRouteAdvertisementInterval (MRAI) [85] parameter

in BGP is used to limit the sending of updates to once per interval (today a value

of 30sec is common). Unfortunately, this makes it take longer for the network to

come to an agreement as the MRAI delays how quickly an update can make its way

throughout the network.

1.2.2 Because Routing Software is Complex

Selecting routes involves computations across millions of routers spread over vast

distances, multiple routing protocols, and highly customizable routing policies. This

leads to very complex software systems.

As shown in Figure1.4(a), these routers typically run an operating system, and

a collection of protocol daemons which implement the various tasks associated with

protocol operation. For example, shown are BGP, which is used forinter-domain

routing (i.e., communicating with external networks), OSPF (Open Shortest Path

First), which is used for intra-domain routing (determining paths within the net-

9

work), and a command line for con�guring static routes. The BGP process needs to

know the routes chosen by OSPF because the internal network distance is used in

BGP's calculation for selecting routes. For this, a route distributerwill perform this

distribution.

In Figure 1.4(b), the BGP routing process is shown. For each neighbor of the

router, the process must maintain a session. This includes typical Unix sockets type

functionality, as well as maintaining a state machine to track the various BGP states.

The stream of incoming data is split up into update messages and passed to the in-

coming �lter, which will drop or modify routes based on the router's con�guration.

The update is then sent to the decision process, which performs the main functional-

ity of the protocol { updating the RIB with the received update, reading from the the

routing information base (RIB) the routes for that same pre�x from the other neigh-

bors, and deciding which of the routes is best based on the con�gurable preferences.

The chosen route is then passed to each of the outgoing �lters, one per neighbor,

where based on the con�guration, the �lter can drop or modify theroute. Finally,

the update is sent to the neighboring router, possibly after some delay (e.g., based

on the MRAI timer).

(a) System-wide router software. (b)BGP software architecture.

Figure 1.4: Router software architecture.

Like any complex software, routing software is prone to implementation errors, or

bugs. Due to the critical nature of routers in today's Internet, the e�ect of a bug in

one of the routers can be tremendous and far reaching. This complexity has led to

10

several major Internet wide outages recently [87, 89, 86]. In each case, a legitimate

con�guration change in one network caused an update to be sent which eventually

triggered a bug. This is especially damaging since there are only a limitednumber

router vendors and models. So, a single update can be propagatedthroughout the

network (in all directions), and trigger the bug on a number of routers. This then

causes those routers to send out bogus updates, which can either cause neighboring

routers to shutdown the session (if the bogus update was malformed) or actually use

and propagate the bogus route. The latter case is especially damaging since byzantine

faults are harder to detect and localize than a bug which causes a crash. Luckily, a

coordinated attack on the Internet routing system that exploitsthese bugs has not

occurred yet. Though, that would be a possible way to create a `cyber-nuke'[88].

1.2.3 Because Routing Software is Con�gurable

Because of the e�ects change can have, operators must go out of their way to minimize

the disruption. In fact, the cost of the people and systems that manage a network

typically exceeds the cost of the underlying nodes and links [68]. Consider an example

where a router needs to be replaced. In some cases, it is possible toavoid a disruption

due to the router going down through a series of recon�gurationswhich gradually

changes the routing protocol parameters to coax tra�c to not go through the router in

question [50][51]. Of course, the side e�ects of a recon�guration, such as convergence

and triggering router bugs, will still exist and can cause disruption.Further, being a

human process, errors in the con�gurations can and do occur. Most network outages

are actually caused by operator errors, rather than equipment failure [68].

Even if the operator is careful and the process can be automated, given the large

and distributed nature of the Internet, an operator does not really know the full e�ect

of a given change before it is made. A network operator might alter the con�guration

of a router, e.g., to change which provider is preferred, which causes a previously

11

unused (but known) route to now be selected. This new route mightactually be a

black hole that the operator did not know about. While black holes canhappen as

a transient behavior of the convergence process, black holes canlast for hours, even

days [64]. Tracking down connectivity problems is a huge e�ort for operators.

1.3 Refactoring Router Software

In order to better accommodate change in the Internet, we propose refactoring the

router software. We �rst want to enable network operators to make changes, which

if they are really just local changes, do not have any external impact. For those

changes that do have an impact external to the network making the change, the

changes should not cause harmful network-wide e�ects. Our approach is to redesign

the routers rather than the routing protocols. With this, network operators can

immediately gain bene�ts without having to coordinate with neighboring network

operators or waiting for a Internet-wide upgrade to some new protocol.

As illustrated in Figure 1.5, the refactoring we are suggesting can be categorized by

the various levels at which a network and the network components can be viewed and

how they interact with other layers. For each boundary between layers, we provide a

system that breaks the tight coupling between the layers. In doingso, the underlying

infrastructure is more accommodating of change. Each is briey introduced below,

with more detail in the chapters dedicated to each system.

Between the router software and the neighboring routers in t he network

(Chapter 2): The software running on routers is large and complex, and therefore

can be quite buggy. In order for the rest of the network to operate properly, we

are reliant on this single piece of software to behave correctly. A buggy router can

send bogus messages to the neighboring routers. We propose breaking this reliance

on a single router software implementation. While providing the view ofa single

12

router instance to the operator and neighboring routers, with the Bug-tolerant router,

we internally restructure the software to allow multiple, diverse instances of router

software to run in parallel [67]. In doing so we are able to mask errors in any single

implementation. We make the case why this approach is necessary, e�ective, and

possible. We also describe an architecture which deals with the uniqueproperties

of routing software { doing so while hiding the multiple instances and churn among

the instances from both the network operator and neighboring routers. We built a

prototype implementation consisting of a set of extensions built on top of Linux and

tested with multiple version of XORP [9], Quagga [6], and BIRD [1]. Experiments

with BGP message traces and the open-source routing software running on our Linux-

based router hypervisor demonstrate that our solution scales tolarge networks and

e�ciently masks buggy behavior.

Between the physical topology of routers and the logical IP l ayer topology

of routers (Chapter 3): The routing protocols work at the IP layer, essentially

viewing routers as nodes in a graph and determining paths between nodes. However,

this IP layer logical topology is tightly coupled to the underlying physical network.

If an operator needs to, for example, shut down a physical router to perform some

maintenance (e.g., replace a power supply), the corresponding node in the logical IP

layer topology also must be shutdown. This then triggers the routing protocols to

adapt and is the source of disruption. We propose decoupling the logical instance of

a router from the physical box it runs on. This is done throughVROOM (Virtual

ROuters On the Move), a new network-management primitive that avoids unnecessary

changes to the logical topology by allowing (virtual) routers to freely move from one

physical node to another [103]. Revisiting the example of replacing a power supply,

with VROOM the (virtual) router can be migrated to a nearby router, the power

supply replaced, and the (virtual) router migrated back without ever changing the IP

layer topology. We present the design of novel migration techniques for virtual routers

13

along with a prototype implementation consisting of extensions to anOpenVZ [5]

(virtualization software) and Quagga (routing software) based system. We evaluate

with both hardware (using NetFPGA [79]) and software (using Linux) data planes.

Our evaluation shows that VROOM is transparent to routing protocols and results

in no performance impact on the data tra�c when a hardware-based data plane is

used.

Between the internal network and neighboring ASes (Chapter 4): The

connection between two networks involves the physical link between a router in each

network along with a BGP session between those routers. Networkoperators rou-

tinely need to change which router an external network connectsto (e.g., to perform

maintenance, migrate load to a new router, or support a customerrequest). Unfortu-

nately, the basic task of rehoming a BGP session requires shutting down the session,

recon�guring the new router, restarting the session, and exchanging a large amount

of routing information typically leading to downtimes of several minutes. This is due

to the router design which binds the links and session state to a singlerouter. We

propose breaking this tight coupling. Instead, withRouter Grafting, parts of a router

are seamlessly removed from one router and merged into another [65]. We focus on

grafting a BGP session and the underlying link from one router to another with no

disruption. We show that grafting a BGP session is practical even with today's mono-

lithic router software. Our prototype implementation uses and extends Click [72], the

Linux kernel, and Quagga, and introduces a daemon that automates the migration

process. We also apply router grafting to intra-domain tra�c engineering. Previously,

intra-domain tra�c engineering was limited to controlling how tra�c o ws through

the network. With router grafting, we now have the additional capability to control

where tra�c enters and exits the network. We present a new optimization framework

for determining what links to migrate. Our evaluation based on real tra�c traces

14

shows that with router grafting a network can carry 18.8% more tra�c (at a similar

level of congestion) over optimizing routing alone.

1.4 Router Trends

While the proposed router software refactoring is seemingly radical, in actuality it

is in line with recent trends in router and network technology. We areproviding a

complete system solution that capitalizes on these trends. We aim toshow how the

router's software could be redesigned to build a more dependable network that better

accommodates change. Discussed here are some of these trends, accompanied by an

illustration of each in Figure1.6.

Control plane, data plane split: (Figure 1.6(a)) The control plane of the router

handles the routing protocols, exchanging routing information between routers. The

routes are stored in a data structure known as the routing information base (RIB). The

selected routes are sent to the data plane, which stores the routes in the forwarding

information base (FIB). The data plane of the router handles the actual data tra�c

by performing a fast lookup in the FIB to decide where to send each packet. In

today's routers, there is a clear separation between the two functions { in many

cases, a physical separation between the route processor and the interface cards. This

separation means that there is there is a clear interface of the interaction between

the control plane and the data plane, which we utilize in the bug tolerant router to

perform voting on each message. Further, there is a clear separation of state { the

RIB is stored in the control plane's memory space, the FIB is storedin the interface

card's memory. We take advantage of this separation with VROOM aswe migrate

the control plane independently from the data plane.

Virtualization on routers: (Figure 1.6(b)) Virtualization is a technology that's

popular in servers to allow a single physical server to appear like it is multiple vir-

15

tual servers. This enables simpler application management. Similarly,routers are

becoming so large that partitioning them into smaller units would also bebene�cial.

As such, virtualization technology is making its way into routers [61][37]. As a �rst

step, today's routers utilize physical separation to provide the ability to partition the

router's physical resources (line cards, route processors) intodistinct units called log-

ical routers. Eventually, the routers will have virtualization technology on both the

route processor (allowing multiple instances of router software, each with their own

RIB) and on the interface cards (allowing multiple FIBs). With VROOM we utilize

the live machine migration capability that is standard in modern virtual machine

technology to perform the control plane migration.

Dynamic network-layer link technology: (Figure 1.6(c)) In order for two neigh-

boring routers to communicate, they need a link connecting them. While this could

be simply a physical cable, in today's networks, the link connecting two routers ac-

tually goes through an underlying layer-2 network (e.g., optical switches). They have

the ability to dynamically setup and tear down network-layer links, with an extremely

short switchover time. We capitalize on this in both VROOM and routergrafting

where in order to migrate an entire virtual router or single routing session, the un-

derlying links connecting two neighboring routers needs to be moved. If the links are

physical cables which require manually unplugging from one router and then plugging

into a another router, migration would be infeasible. With dynamic network-layer

link setup and tear down, migration can be seamless.

Redundancy: (Figure 1.6(d)) Given the critical nature of the Internet, networks

and routers are built with extra redundancy. The routers typicallyhave a hot standby

route processor which is synchronized with the active route processor so that the hot

standby can take over for the active when the active fails [3]. Further, the network

itself has additional capacity to deal with tra�c spikes. As each of our systems

require extra processing, with the redundancy present in the routers and network, the

16

necessary extra processing power is already available. With the bugtolerant router

we run multiple instances, which utilizes the extra processing power inrouters. With

VROOM we migrate an entire virtual router, which requires a routerwith enough

space capacity to absorb that virtual router. With Router Grafting, we migrate

an individual link and associated session, which requires a spare interface and some

incremental processing power.

17

Figure 1.5: Router software refactoring.

18

(a) Control/Data Plane Split. (b) Virtualization.

(c) Dynamic Links. (d) Redundancy.

Figure 1.6: Router trends.

19

Chapter 2

Hiding Routing Software Bugs

from Adjacent Routers with the

Bug-Tolerant Router

2.1 Introduction

This chapter focuses on the inherent complexity of the software that is running on

the routers in the Internet. These routers typically run an operating system, and

a collection of protocol daemons which implement the various tasks associated with

protocol operation. Like any complex software, routing software is prone to imple-

mentation errors, orbugs. In this chapter, we adapt diverse replication to build router

software that is not only tolerant of bugs but utilizes replication in a manner that is

completely transparent to neighboring routers.

2.1.1 Challenges in dealing with router bugs

The fact that bugs can produce incorrect and unpredictable behavior, coupled with

the mission-critical nature of Internet routers, can produce disastrous results. This

20

can be seen from the recent spate of high-pro�le vulnerabilities, outages, and huge

spikes in global routing instability [87, 89, 86, 29, 45, 42, 25, 71]. Making matters

worse, ISPs often run the same protocols and use equipment fromthe same vendor

network-wide, increasing the probability that a bug causes simultaneous failures or

a network-wide crash. While automated systems canpreventmiscon�gurations from

occurring [46, 47], these techniques do not work for router bugs, and in fact the

state-of-the-art solution today for dealing with router bugs involves heavy manual

labor|testing, debugging, and �xing code. Unfortunately operators must wait for

vendors to implement and release a patch for the bug, or �nd an intermediate work

around on their own, leaving their networks vulnerable in the meantime.

Worse still, bugs are often discovered onlyafter they cause serious outages. While

there has been work on dealing with failures in networks [78, 75, 58], router bugs

di�er from traditional \fail-stop" failures (failures that cause the router to halt in

some easily-detectable way) in that they violate the semantics of protocol operation.

Hence a router can keep running, but behave incorrectly { by advertising incorrect

information in routing updates, or by distributing the wrong forwarding-table entries

to the data plane, which can trigger persistent loops, oscillations, packet loss, session

failure, as well as new kinds of anomalies that can't happen in correctly behaving pro-

tocols. This fact, coupled with the high complexity and distributed nature of Internet

routing, makes router bugs notoriously di�cult to detect, localize,and contain.

As networks become better at dealing with traditional failures, andas systems

that automate con�guration become more widely deployed, we expect bugs to be-

come a major roadblock in improving network availability. While we acknowledge

the long-standing debate in the software engineering community onwhether it is pos-

sible to completely prevent software errors, we believe unforeseen interactions across

protocols, the potential to misinterpret RFCs, the increasing functionality of Internet

21

routing, and the ossi�cation of legacy code and protocols will make router bugs a

\fact-of-life" for the foreseeable future and we proceed underthat assumption.

2.1.2 The case for diverse replication in routers

Unlike fail-stop failures, router bugs can causeByzantine faults, i.e., they cause

routers to not only behave incorrectly, but violate protocol speci�cation. Hence,

we are forced to take a somewhat heavy-handed approach in dealing with them (yet

as we will �nd, one that appears to be necessary, and one that ourresults indicate

is practical). In particular, our design uses a simple replication-based approach: in-

stead of running one instance of routing software, our design uses arouter hypervisor1

to run multiple virtual instances of routing software in parallel. The instances are

made diverse to decrease the likelihood they all simultaneously fail due to a bug.

We leveragedata diversity (to manipulate the inputs to the router, for example by

jittering arrival time of updates, or changing the layout of the executable in memory)

and software diversity(given multiple implementations of routing protocols already

exist, running several of them in parallel). We then rely on Byzantine-fault tolerant

(BFT) techniques to select the \correct" route to send to the forwarding table (FIB),

or advertise to a neighbor2.

The use of BFT combined withdiverse replication(running multiple diverse in-

stances) has proven to be a great success in the context of traditional software,

for example in terms of building robust operating systems and runtime environ-

ments [33, 62, 80, 110, 20]. These techniques are widely used since heterogeneous

1 We use the termrouter hypervisor to refer to a software layer that maintains arbitrates between
outputs from multiple software replicas. However, our approach does not require true virtualization
to operate, and may instead take advantage of lighter-weight containerization techniques [5].

2 For BGP, sources of non-determinism such as age-based tie-breaking and non-deterministic
MED must be disabled. This is often done by operators anyway because they lead to unpredictable
network behavior (making it hard to engineer tra�c, provision netw ork capacity, and predict link
loads).

22

replicas are unlikely to share the same set of bugs [33, 62, 110]. In this chapter, we

adapt diverse replication to build router software that is tolerant of bugs.

A common objection of this approach is performance overheads, as running mul-

tiple replicas requires more processing capacity. However, BFT-based techniques

provide a simple (and low-cost) way to leverage the increasingly parallel nature of

multicore router processors to improve availability without requiringchanges to router

code. Network operators also commonly run separatehardware instances for re-

silience, across multiple network paths (e.g., multihoming), or multiple routers (e.g.,

VRRP [58]). Some vendors also protect against fail-stop failures by running ahot-

standby redundant control plane either on multiple blades within a single router or

even on a single processor with the use of virtual machines [35], in which case lit-

tle or no additional router resources are required. Since router workloads have long

periods with low load [13], redundant copies may be run during idle cycles. Recent

breakthroughs vastly reduce computational overhead [111] and memory usage [56],

by skipping redundancy across instances.

2.1.3 Designing a Bug-Tolerant Router

In this chapter, we describe how to eliminate router bugs \virtually"(with use of vir-

tualization technologies). We design abug-tolerantrouter (BTR), which masks buggy

behavior, and avoids letting it a�ect correctness of the network layer, by applying soft-

ware and data diversity to routing. Doing so, however, presents new challenges that

are not present in traditional software. For example, (i) wide-area routing protocols

undergo a rich array of dynamics, and hence we develop BFT-basedtechniques that

react quickly to buggy behavior without over-reacting to transient inconsistencies

arising from routing convergence, and (ii) our design must interoperate with exist-

ing routers, and not require extra con�guration e�orts from operators, and hence we

23

develop arouter hypervisor that masks parallelism and churn (e.g., killing a faulty

instance and bootstrapping a new instance).

At the same time we leverage new opportunities made available by the nature

of routing to build custom solutions and extend techniques previously developed for

traditional software. For example, (i) routers are typically built in amodular fashion

with well-de�ned interfaces, allowing us to adapt BFT with relatively lowcomplexity,

and implement it in the hypervisor with just a few hundred lines of code, (ii) using

mechanisms that change transient behavior without changing steady-state outcomes

are acceptable in routing, which we leverage to achieve diversity across instances,

and (iii) routing has limited dependence on past history, as the e�ects of a bad FIB

update or BGP message can be undone simply by overwriting the FIB or announcing

a new route, which we leverage to speed reaction by selecting a route early, when

only a subset of instances have responded, and updating the route as more instances

�nish computing. Moreover, router outputs are independent of the precise ordering

and timing of updates, which simpli�es recovery and bootstrapping new instances.

The next section discusses how diversity can be achieved and how e�ective it is,

followed by a description of our design (Section2.3) and implementation (Section2.4).

We then give performance results in Section2.5, consider possible deployment sce-

narios in Section2.6, contrast with related work in Section 2.7, and conclude in

Section2.8.

2.2 Software and Data Diversity in Routers

The ability to achieve diverse instances is essential for our bug-tolerant router ar-

chitecture. Additionally, for performance reasons, it is importantthat the number

of instances that need to be run concurrently is minimal. Fortunately, the nature of

routing and the current state of routing software lead to a situation where we are able

24

to achieve enough diversity and that it is e�ective enough that only asmall number

of instances are needed (e.g., 3-5, as discussed below). In this section we discuss the

various types of diversity mechanisms, in what deployment scenariothey are likely to

be used, and how e�ective they can be in avoiding bugs.

Unfortunately, directly evaluating the bene�ts of diversity across large numbers

of bugs is extremely challenging, as it requires substantial manual labor to reproduce

bugs. Hence, to gain some rough insights, we studied the bug reports from the

XORP and Quagga Bugzilla databases [9, 6], and taxonomized each into what type

of diversity would likely avoid the bug and experimented with a small subset, some

of which are described in Table2.1.3

2.2.1 Diversity in the software environment

Code base diversity : The most e�ective, and commonly thought of, type of di-

versity is where the routing software comes from di�erent code bases. While often

dismissed as being impractical because a company would never deploymultiple teams

to develop the same software, we argue that diverse software bases are already avail-

able and that router vendors do not need to start from scratch and deploy multiple

teams.

First, consider that there are already several open-source router software packages

available (e.g., XORP, Quagga, BIRD). Their availability has spawned the formation

of a new type of router vendor based on building a router around open-source soft-

ware [8, 9].

Additionally, the traditional (closed-source) vendors can make use of open-source

software, something they have done in the past (e.g., Cisco IOS is based on BSD

Unix), and hence may run existing open-source software as a \fallback" in case their

3To compare with closed-source software, we also studied publicly available Cisco IOS bug reports,
though since we do not have access to IOS source code we did not run our system on them.

25

Bug Description E�ective
Diversity

XORP
814

The asynchronous event handler did not fairly allocate its re-
sources when processing events from the various �le descrip-
tors. Because of this, a single peer sending a long burst of
updates could cause other sessions to time out due to missed
keepalives.

Version
(worked in
1.5, but not
1.6)

Quagga
370

The BGP default-originate command in the con�guration �le
does not work properly, preventing some policies from being
correctly realized.

Version
(worked in
0.99.5, but
not 0.99.7)

XORP
814

(See above) Update
(randomly
delay deliv-
ery)

Quagga
(not
�led)

A race condition exists such that when a pre�x that is with-
drawn and immediately re-advertised, the router only propa-
gates to peers the withdraw message, and not the subsequent
advertisement. Note: it was reported on the mailing list ti-
tled \quick route ap gets mistaken for duplicate, route is
then ignored," but never �led in Bugzilla.

Update
(randomly
delay deliv-
ery)

XORP 31 A peer that initiates a TCP connection and then immedi-
ately disconnects causes the BGP process to stop listening
for incoming connections.

Connection
(can delay
disconnect)

Quagga
418

Static routes that have an unreachable next hop are correctly
considered inactive. However, the route remains inactive even
when the address of network device is changed to something
that would make the next hop reachable (e.g., a next hop of
10.0.0.1 and an device address that changed from 9.0.0.2/24
to 10.0.0.2/24)

Connection
(can inter-
pret change
as reset as
well).

Table 2.1: Example bugs and the diversity that can be used to avoid them.

26

main routing code crashes or begins behaving improperly. Router vendors that do

not wish to use open-source software have other alternatives for code diversity, for

example, router vendors commonly maintain code acquired from thepurchase of other

companies [84].

As a �nal possibility, consider that ISPs often deploy routers frommultiple ven-

dors. While it is possible to run our bug-tolerant router across physical instances, it

is most practical to run in a single, virtualized, device. Even without access to the

source code, this is still a possibility with the use of publicly available router emu-

lators [2, 4]. This way, network operators can run commercial code along with our

hypervisor directly on routers or server infrastructure withoutdirect support from

vendors. While intellectual property restrictions arising from theirintense competi-

tion makes vendors reticent to share source code with one another, this also makes it

likely that di�erent code bases from di�erent vendors are unlikely toshare code (and

hence unlikely to share bugs).

We base our claim that this is the most e�ective approach partially from previous

results which found that software implementations written by di�erent programmers

are unlikely to share the vast majority of implementation errors in code [70]. This re-

sult can be clearly seen in two popular open-source router software packages: Quagga

and XORP di�er in terms of update processing (timer-driven vs. event-driven), pro-

gramming language (C vs. C++), and con�guration language, leadingto di�erent

sorts of bugs, which are triggered on di�ering inputs. As such, code-base diversity is

very e�ective and requires only three instances to be run concurrently.

However, e�ectively evaluating this is challenging, as bug reports typically do not

contain information about whether inputs triggering the bug would cause other code

bases to fail. Hence we only performed a simple sanity-check: we selected 9 bugs from

the XORP Bugzilla database, determined the router inputs which triggered the bug,

veri�ed that the bug occurred in the appropriate branch of XORP code, and then

27

replayed the same inputs to Quagga to see if it would simultaneously fail. We then

repeated this process to see if Quagga's bugs existed in XORP. In this small check,

we did not �nd any cases where a bug in one code base existed in the other, mirroring

the previous �ndings.

Version diversity : Another source of diversity lies in the di�erent versions of the

same router software itself. One main reason for releasing a new version of software

is to �x bugs. Unfortunately, operators are hesitant to upgradeto the latest version

until it has been well tested, as it is unknown whether their particular con�guration,

which has worked so far (possibly by chance), will work in the latest version. This

hesitation comes with good reason, as often times when �xing bugs or adding features,

new bugs are introduced into code that was previously working (i.e., not just in new

features). This can be seen in some of the example bugs described inTable 2.1. With

our bug-tolerant router, we can capitalize on this diversity.

For router vendors that fully rely on open-source software, version diversity will

add little over the e�ectiveness of code-base diversity (assuming they use routers from

three code bases). Instead, version diversity makes the most sense for router vendors

that do not fully utilize code-base diversity. In this case, running the old version in

parallel is protection against any newly introduced bugs, while still being able to take

advantage of the bug �xes that were applied.

Evaluating this is also a challenge as bug reports rarely contain the necessary

information. Because of this, to evaluate the fraction of bugs shared across versions

(and thus, the e�ectiveness), we ran static analysis tools (splint,uno, and its4) over

several versions of Quagga, and investigated overlap across versions. For each tool,

we ran it against each of the earlier versions, and then manually checked to see how

many bugs appear in both the earlier version as well as the most recent version. We

found that overlap decreases quickly, with 30% of newly-introduced bugs in 0.99.9

avoided by using 0.99.1, and only 25% of bugs shared across the two versions. As it

28

is not 100% e�ective, this will most likely be used in combination with other forms

of diversity (e.g., diversity in the execution environment, described next).

2.2.2 Execution environment diversity

Data diversity through manipulation of the execution environment has been shown to

automatically recover from a wide variety of faults [20]. In addition, routing software

speci�c techniques exist, two of which are discussed below. As closed-source vendors

do not get the full bene�t from running from multiple code bases, they will need to

rely on data diversity, most likely as a complement to version diversity. In that case,

around �ve instances will be needed depending on the amount of di�erence between

the di�erent versions. This comes from the result of our study which showed version

diversity to be 75% e�ective, so we assume that two versions will be run, each with two

or three instances of that version (each diversi�ed in terms of execution environment,

which as we discuss below can be fairly e�ective).

Update timing diversity: Router code is heavily concurrent, with multiple threads

of execution and multiple processes on a single router, as well as multiple routers si-

multaneously running, and hence it is not surprising that this creates the potential

for concurrency problems. Luckily, we can take advantage of theasynchronous na-

ture of the routing system to increase diversity, for example, by introducing delays

to alter the timing/ordering of routing updates received at di�erent instances with-

out a�ecting the correctness of the router (preserving any ordering required by the

dependencies created by the protocol,e.g., announcements for the same pre�x from

a given peer router must be kept in order, but announcements from di�erent peer

routers can be processed in any order). We were able to avoid two of the example

bugs described in Table2.1 with a simple tool to introduce a randomized short de-

lay (1-10ms) when delivering messages to the given instance. Further, by manually

29

examining the bug databases, we found that approximately 39% of bugs could be

avoided by manipulating the timing/ordering of routing updates.

Connection diversity: Many bugs are triggered by changes to the router's network

interfaces and routing sessions with neighbors. From this, we can see that another

source of diversity involves manipulating the timing/order of eventsthat occur from

changes in the state or properties of the links/interfaces or routing session. As our

architecture (discussed in Section2.3) introduces a layer between the router software

and the sessions to the peer routers, we can modify the timing and ordering of con-

nection arrivals or status changes in network interfaces. For thetwo example bugs in

Table 2.1, we found they could be avoided by simple forms of connection diversity,

by randomly delaying and restarting connections for certain instances. By manually

examining the bug database, we found that approximately 12% of bugs could be

avoided with this type of diversity.

2.2.3 Protocol diversity

As network operators have the power to perform con�guration modi�cations, some-

thing the router vendors have limited ability to do, there are additional forms of

diversity that they can make use of. Here, we discuss one in particular. The pro-

cess of routing can be accomplished by a variety of di�erent techniques, leading to

multiple di�erent routing protocolsand algorithms, including IS-IS, OSPF, RIP, etc.

While these implementations di�er in terms of the precise mechanisms they use to

compute routes, they all perform a functionally-equivalent procedure of determining

a FIB that can be used to forward packets along a shortest path to a destination.

Hence router vendors may run multiple di�erent routing protocols inparallel, voting

on their outputs as they reach the FIB. To get some rough sense of this approach,

we manually checked bugs in the Quagga and XORP Bugzilla databases to deter-

mine the fraction that resided in code that was shared between protocols (e.g., the

30

zebradaemon in Quagga), or code that was protocol independent. Fromour analysis,

we estimate that at least 60% of bugs could be avoided by switching toa di�erent

protocol.

2.3 Bug Tolerant Router (BTR)

Our design works by running multiple diverse router instances in parallel. To do this,

we need some way of allowing multiple router software instances to simultaneously

execute on the same router hardware. This problem has been widelystudied in the

context of operating systems, through the use ofvirtual machine (VM) technologies,

which provide isolation and arbitrate sharing of the underlying physical machine re-

sources. However, our design must deal with two new key challenges: (i) replication

should be transparent and hidden from network operators and neighboring routers

(Section 2.3.1), and (ii) reaching consensus must handle the transient behavior of

routing protocols, yet must happen quickly enough to avoid slowing reaction to fail-

ures (Section2.3.2).

2.3.1 Making replication transparent

First, our design should hide replication from neighboring routers. This is necessary

to ensure deployability (to maintain sessions with legacy routers), e�ciency (to avoid

requiring multiple sessions and streams of updates between peers), and ease of main-

tenance (to avoid the need for operators to perform additional con�guration work).

To achieve this, our design consists of arouter hypervisor, as shown in Figure2.1.

The router hypervisor performs four key functions:

Sharing network state amongst replicas: Traditional routing software receives

routing updates from neighbors, and uses information contained within those updates

to select and compute paths to destinations. In our design, multipleinstances of router

31

Figure 2.1: Architecture of a bug-tolerant router.

software run in parallel, and somehow all these multiple router instances need to learn

about routes advertised by neighbors. To compute routes, eachinternal instance needs

to be aware of routing information received on peering sessions. However, this must

happen without having instances directly maintain sessions with neighboring routers.

To achieve this, we use areplicator component, which acts as a replica coordinator

to send a copy of all received data on the session to each router instance within the

system. Note that there may be multiple sessions with a given peer router (e.g.,

in the case of protocol diversity), in which case the replicator sends received data

to the appropriate subset of instances (e.g., those running the same protocol). The

replicator doesnot need to parse update messages, as it simply forwards all data it

receives at the transport layer to each instance.

Advertising a single route per pre�x: To protect against buggy results, which

may allow the router to keep running but may cause it to output an incorrect route,

we should select the majority result when deciding what information to publish to the

FIB, or to advertise to neighbors. To do this, we run avoter module that monitors

advertisements from the router instances, and determines the route the router should

use (e.g., the majority result).4 Our design contains two instances of the voter: an

update voter that determines which routing updates should be sent to neighbors,

and a FIB voter that determines which updates should be sent to the router's FIB

4Since voting also reveals the set of misbehaving instances, our approach also simpli�es diagnosis,
as the hypervisor can explicitly report the set of buggy outputs it observes.

32

(forwarding table). As with the replicator, the update voter may vote among a subset

of instances, for example, those belonging to the same protocol. The FIB voter will

vote among all instances, as all instances must come to the same decisions with regard

to the FIB. To ensure advertisements are consistent with FIB contents, the update

voter and FIB voter must select the same routes. To handle this, the same voting

algorithm must be used on both updates and FIB changes.

To avoid introducing bugs, the voter should be as simple as possible (our voter

implementation, containing multiple alternative voting strategies, is 514 lines of code).

We assume the voter is trusted (since it is much simpler than router code, we expect

it to have signi�cantly fewer bugs and therefore the fact that it is asingle point-

of-failure is only a slight concern), and that replication is asynchronous (we do not

assume all instances respond equally fast, as instances may be slowor mute due to

bugs), and transparent (external routers do not interact directly with the multiple

instances, so as to simplify deployment).

Maintaining a set of running replicas: BFT-based techniques rely on having a

su�cient number of correctly-behaving replicas in order to achieveconsensus. Hence,

if an instance crashes or begins producing buggy output, we may wish to replace it

with a new copy. To achieve this, our hypervisor is responsible forbootstrappingthe

new instance when it begins running. For traditional routers, bootstrapping involves

establishing a session with a neighboring router, which causes the neighboring router

to send out update messages for each of the pre�xes it has an entry for in its RIB. To

avoid introducing externally visible churn, the hypervisor keeps a history of the last

update peers have sent for each pre�x, and replays this for any new instance upon

startup of that instance.

Presenting a common con�guration interface: As there is no standardization

of the con�guration interface in routers, each router has endedup with its own in-

terface. In the case where instances from di�erent code bases are used, to keep the

33

network operator from needing to con�gure each instance separately, a mechanism is

needed to hide the di�erences in each con�guration interface. Fortunately, this is not

unlike today's situation where ISPs use routers from multiple vendors. To cope with

this, ISPs often run con�guration management tools which automate the process of

targeting each interface with a common one. As such, we can rely onthese same

techniques to hide the con�guration di�erences.

2.3.2 Dealing with the transient and real-time nature of

routers

The voter's job is to arbitrate amongst the \outputs" (modi�catio ns to the FIB,

outbound updates sent to neighbors) of individual router instances. This is more

complex than simply selecting the majority result { during convergence, the di�erent

instances may temporarily have di�erent outputs without violating correctness. At

the same time, routers must react quickly enough to avoid slowing convergence. Here,

we investigate several alternative voting strategies to address this problem, along with

their tradeo�s.

Handling transience with wait-for-consensus : The extreme size of the Inter-

net, coupled with the fact that routing events are propagated globally and individual

events trigger multiple routing updates, results in very high updaterates at routers.

With the use of replication, this problem is potentially worsened, as di�erent instances

may respond at di�erent times, and during convergence they may temporarily (and

legitimately) produce di�erent outputs. To deal with this, we usewait-for-consensus

voting, in which the voter waits for all instances to compute their results before de-

termining the majority vote. Because all non-buggy routers output the same correct

result in steady-state, this approach can guarantee that ifk or fewer instances are

faulty with at least 2k + 1 instances running, no buggy result will reach the FIB or

be propagated to a peer.

34

Note that in practice, waiting for consensus may also reduce instability, as it

has an e�ect similar to the MRAI (Minimum Route Advertisement Interval) timer

(routers with MRAI send updates to their neighbors only when a timer expires, which

eliminate multiple updates to a pre�x that occur between timer expiries). Namely,

forcing the voter to wait for all instances to agree eliminates the need to advertise

changes that happen multiple times while it is waiting (e.g., in the presence of unstable

pre�xes). However, the downside of this is that reaction to events may be slowed in

some cases, as the voter must wait for thek+1th slowest instance to �nish computing

the result before making a decision.

Speeding reaction time with master/slave : Routers must react quickly to

failures (including non-buggy events) to ensure fast convergence and avoid outages.

At the same time, the e�ects of a bad FIB update or BGP message can be undone

simply by overwriting the FIB or announcing a new route. To speed reaction time, we

hence consider an approach where we allow outputs to temporarily be faulty. Here,

we mark one instance as themaster, and the other instances as slaves. The voter

operates by always outputting the master's result. The slaves' results are used to

cross-check against the master after the update is sent or during idle cycles. The

bene�t of this approach is that it speeds convergence to the running time of the

master's computation. In addition, convergence is no worse than the convergence of

the master, and hence at most one routing update is sent for eachreceived update.

However, the downside of this approach is that if the master becomes buggy, we

may temporarily output an incorrect route. To address this, whenfailing over to a

slave, the voter readvertises any di�erences between the slaves' routing tables and the

routing table computed by the master. Hence, temporarily outputting an incorrect

route may not be a problem, as it only leads to a transient problem that is �xed when

the slaves overthrow the master.

35

Finally, we consider a hybrid scheme which we refer to ascontinuous-majority.

This approach is similar to wait-for-consensus in that the majority result is selected

to be used for advertisement or for population into the FIB. However, it is also similar

to master/slave in that it does not wait for all instances to computeresults before

selecting the result. Instead, every time an instance sends an update, the voter reruns

its voting procedure, and updates are only sent when the majorityresult changes. The

bene�t of this approach is it may speed reaction to failure, and the majority result

may be reached before the slowest instance �nishes computing. The downside of this

approach is that convergence may be worsened, as the majority result may change

several times for a single advertised update. Another downside ofthis approach is

that voting needs to be performed more often, though, as we show in our experiments

(Section2.5) this overhead is negligible under typical workloads.

2.4 Router Hypervisor Prototype

Our implementation had three key design goals: (i) not requiring modi�cations to

routing software, (ii) being able to automatically detect and recover from faults, and

(iii) low complexity, to not be a source of new bugs. Most of our designis agnostic to

the particular routing protocol being used. For locations where protocol-speci�c logic

was needed, we were able to treat messages mostly as opaque strings. This section

describes our implementation, which consists of a set of extensionsbuilt on top of

Linux. Our implementation was tested with XORP versions 1.5 and 1.6, Quagga

versions 0.98.6 and 0.99.10, and BIRD version 1.0.14. We focused our e�orts on sup-

porting BGP, due to its complexity and propensity for bugs. Section2.4.1describes

how we provide awrapperaround the routing software, in order for unmodi�ed rout-

ing software to be used, and Section2.4.2describes the various faults that can occur

and how our prototype detects and recovers from them.

36

2.4.1 Wrapping the routing software

To eliminate the need to modify existing router software, our hypervisor acts as a

wrapper to hide from the routing software the fact that it is a partof a bug-tolerant

router, and allows the routing instances to share resources suchas ports, and access

to the FIB. Our design (Figure2.2) takes advantage of the fact that sockets are used

for communicating with peer routers, and for communicating forwarding table (FIB)

updates to the kernel. Hence, our implementation intercepts socket calls from the

router instances using the LDPRELOAD environment variable and uses a modi�ed

libc library, called hv-libc, to redirect messages to a user-space module, calledvirtd,

which manages all communication.

Figure 2.2: Implementation architecture.

The two key functions the hypervisor then needs to manage are discussed below:

Socket-based communications: To connect to peer routers (with TCP) and for

writing to the common FIB (with Netlink), the multiple routers need to share access

to a common identi�er space (e.g., port 179 in BGP). We handle this by intercepting

socket system calls in hv-libc, performing address translation in hv-libc, and using

virtd as a proxy (e.g., when a router instance listens on port 179, instead they are

made to listen on a random port and virtd will listen on 179 and connectto each of

the random ports when receiving an incoming connection).

Bootstrapping new connections: When the BTR initially starts up, the routing

instances start with empty routing tables. In BGP, a session with a peer is established

by creating a TCP connection, exchanging OPEN messages, and acknowledging the

37

OPEN message with a KEEPALIVE message. After the session is established, the

peers exchange routing information. However, when replacing a failed instance, we

need to bootstrap it locally, to prevent the failure from being externally visible (e.g.,

sending aroute-refresh to a peer). Additionally, we need to bootstrap it indepen-

dently, to prevent the new instance starting in a faulty state (e.g., bootstrapping o�

another router instance). Since a router's state only depends onthe last received RIB

advertised by its neighbors, we add some additional logic to the hypervisor to store

the last-received update for each (pre�x,neighbor) pair. Then when a new instance is

started, the hypervisor replays its stored updates. To lower complexity, the hypervi-

sor treats the (pre�x, neighbor) �elds and other attributes in the packets as opaque

strings, and does not implement protocol logic such as route selection.

2.4.2 Detecting and recovering from faults

To deal with bugs, our hypervisor mustdetect which outputs are buggy (e.g., with

voting), and recover from the buggy output (by advertising the voting result, and if

necessary restarting/replacing the buggy instance).

Detection: One of our main goals is that the BTR should be able to automatically

detect and recover from bugs a�ecting correctness of the router's control or data

planes.5 Since our design fundamentally relies on detecting di�erences inoutputs of

di�erent instances, we need to handle every possible way their outputs could di�er.

All faults can be generalized to four categories: (i) an instance sending a message

when it should not, (ii) an instance not sending a message when it should, (iii)

an instance sending a message with incorrect contents, and (iv) bugs that cause a

detectable faulty system event, such as process crashing or socket error. The �rst

three categories are detected by using voting (the fourth category is easily detectable,

so no further discussion is given). If an instance has a di�erent output from the

5We do not address, for example, faults in logging.

38

majority, we consider it a fault. For example, in case (i) above, the winning update

will be the NULL update, in cases (ii) and (iii) the winning update will be the

most-commonly advertised one. To avoid reacting to transient changes, voting is

only performed acrosssteady-stateinstance outputs, which have been stable for a

threshold period of time. We then mark instances whose steady-state outputs di�er

from those of the majority or those that are not yet stable as being faulty (including

in schemes like master/slave, which perform this step after advertising).6

Recovery: In the common case, recovering from a buggy router simply involves

using the output from the voting procedure. However, to deal with cases where the

router is persistently buggy, or crashes, we need some way to kill and restart the

router. As a heuristic, we modi�ed our hypervisor with afault thresholdtimeout. If

an instance continues to produce buggy output for longer than the threshold, or if the

router undergoes a faulty system event, the router is killed. To maintain a quorum of

instances on which voting can be performed, the BTR can restart the failed instance,

or replace it with an alternate diverse copy. In addition, to supportthe master/slave

voting scheme, we need some way to overwrite previously-advertised buggy updates.

To deal with this, our implementation maintains a history of previously-advertised

updates when running this voting scheme. When the hypervisor switches to a new

master, all updates in that history that di�er from the currently advertised routes

are sent out immediately.

2.4.3 Reducing complexity

It is worth discussing here the role the hypervisor plays in the overall reliability of

the system. As we are adding software, this can increase the possibility of bugs in

the overall system. In particular, our goals for the design are that (i) the design is

6We consider legitimate route-apping due to persistent failures andprotocol oscillations to be
rare. However, we can detect this is occurring as the majority of instances will not be stable and we
can act accordingly.

39

simple, implementing only a minimal set of functionality, reducing the set of compo-

nents that may contain bugs, and (ii) the design issmall, opening the possibility of

formal veri�cation of the hypervisor { a more realistic task than verifying an entire

routing software implementation. To achieve these goals, our design only requires the

hypervisor to perform two functions: (i) acting as a TCP proxy, and (ii) bootstrap-

ping new instances. Below, we described how these functions are performed with low

complexity.

Acting as a TCP proxy: To act as a TCP proxy simply involves accepting connections

from one end point (remote or local) and connecting to the other. When there is

a TCP connection already, the hypervisor simply needs to accept the connection.

Then, upon any exchange of messages (in or out) the hypervisor simply passes data

from one port to another. In addition, our design uses voting to make replication

transparent to neighboring routers. Here, the update messages are voted upon before

being sent to the adjacent router. However, this is simply comparing opaque strings

(the attributes) and does not involve understanding the values in the strings.

Overall, our implementation included multiple algorithms and still was only514

lines of code. These code changes occur only in the hypervisor, reducing potential for

new bugs by increasing modularity and reducing need to understandand work with

existing router code. From this, we can see that the hypervisor design is simple in

terms of functionality and much of the functionality is not in the critical section of

code that will act as a single point of failure.

Bootstrapping new instances:To bootstrap new instances requires maintaining some

additional state. However, bugs in this part of the code only a�ectthe ability to

bootstrap new instances, and do not a�ect the \critical path" of voting code. One

can think of this code as a parallel routing instance which is used to initialize the state

of a new instance. Of course, if this instance's RIB is faulty, the newinstance will be

started in an incorrect state. However, this faulty state would either be automatically

40

corrected (e.g., if the adjacent router sends a new route update that overwritesthe

local faulty copy) or it would be determined to be faulty (e.g., when the faulty route

is advertised), in which case a new instances is started. Additionally,the RIB that

needs to be kept is simply a history of messages received from the adjacent router

and therefore is simple. Bootstrapping a new instance also requiresintercepting BGP

session establishment. Here, the hypervisor simply needs to observe the �rst instance

starting a session (an OPEN message followed by a KEEPALIVE) and subsequent

instances simply get the two received messages replayed.

2.5 Evaluation

We evaluate the three key assumptions in our work:

It is possible to perform voting in the presence of dynamic churn (Section 2.5.1):

Voting is simple to do on �xed inputs, but Internet routes are transient by nature.

To distinguish between instances that are still converging to the correct output from

those that are sending buggy outputs, our system delays voting until routes become

stable, introducing a tradeo� between false positives (incorrectlybelieving an unstable

route is buggy) and detection time (during which time a buggy route may be used).

Since these factors are independent of the precise nature of bugs but depend on update

dynamics, we inject synthetic faults, and replay real BGP routing traces.

It is possible for routers to handle the additional overheadof running multiple in-

stances (Section2.5.2): Internet routers face stringent performance requirements,

and hence our design must have low processing overhead. We evaluate this by measur-

ing the pass-through timefor routing updates to reach the FIB or neighboring routers

after traversing our system. To characterize performance under di�erent operating

conditions, we vary the routing update playback rate, the sourceof updates (edge vs.

tier-1 ISP), and the number of peers.

41

Running multiple router replicas does not substantially worsen convergence (Sec-

tion 2.5.3): Routing dynamics are highly dependent on the particular sequence

of steps taken to arrive at the correct route { choosing the wrong sequence can vastly

increase processing time and control overhead. To ensure our design does not harm

convergence, we simulate update propagation in a network of BTRs, and measure con-

vergence time and overhead. For completeness, we also cross-validate these against

our implementation.

2.5.1 Voting in the presence of churn

To evaluate the ability to perform voting in the presence of routing churn, we replayed

BGP routing updates collected from Route Views [7] against our implementation.

In particular, we con�gure a BGP trace replayer to play back a 100 hour long trace

starting on March 1st 2007 at 12:02am UTC. The replayer plays backmultiple streams

of updates, each from a single vantage point, and we collect information on the amount

of time it takes the system to select a route. Since performance is dependent only

on whether the bug is detected by voting or not, and independent of the particular

characteristics of the bug being injected, here we use a simpli�ed model of bugs (based

on the model presented in Section2.4.2), where bugs add/remove updates and change

the next-hop attribute for a randomly-selected pre�x, and havetwo parameters: (i)

duration, or the length of time an instance's output for a particular pre�x is buggy, (ii)

interarrival time , or the length of time between buggy outputs. As a starting point

for our baseline experiments, we assume the length of time a bug a�ects a router,

and their interarrival times, are similar to traditional failures, with duration of 600

seconds, and interarrival time of 1:2 million seconds [76].

42

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1e+08 1e+06 10000 100 1

F
au

lt
ra

te
 [f

ra
ct

io
n]

Bug duration [sec]

cts. major
master

std. router
wait-3

Figure 2.3: E�ect of bug duration on fault rate, holding bug interarrival times �xed at 1.2
million seconds.

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1000 10000 100000 1e+06 1e+07 1e+08

F
au

lt
ra

te
 [f

ra
ct

io
n]

Bug interarrival time [sec]

cts. major
master

std. router
wait-3

Figure 2.4: E�ect of bug interval on fault rate, holding bug duration �xed at 600 seconds.

Comparison of voting strategies

There is a very wide space of voting strategies that could be used in our system.

To explore tradeo�s in this space, we investigated performance under a variety of

alternative voting strategies and parameter settings. We focus on several metrics:

the fault rate (the fraction of time the voter output a buggy route), waiting time

(the amount of time the voter waits before outputting the correct route) and update

overhead(the number of updates the voter output).

Fault rate: We investigate the fault rate of the voting strategies by injecting

synthetic faults and varying their properties. First, we varied themean duration

and interarrival times of synthetic faults (Figures2.3 and 2.4). We found that for

very high bug rates, wait-3 (waiting forK = 3 out of R = 3 copies to agree before

43

selecting the majority result) outperformed master/slave. This happened because

wait-3 is more robust to simultaneous bugs than master/slave, as master/slave takes

some short time to detect the fault, potentially outputting an incorrect route in the

meantime. In addition, unless the bug rate is extremely high, continuous-majority

performs nearly as well as wait-3, with similar robustness and update overhead.

Overall, we found that recovery almost always took place within one second.

Increasing the number of instances running in parallel (R) makes the router even

more tolerant of faults, but incurs additional overheads. Also, wait-for-consensus and

continuous-majority gain more from larger values ofR than the master/slave strategy.

For example, when moving fromR = 3 to R = 4 instances, the fault rate decreases

from 0.088% to 0.003% with wait-for-consensus, while with master/slave the fault

rate only decreases from 0.089% to 0.06%.

However, there may be practical limits on the amount of diversity achievable (for

example, if there is a limited number of diverse code instances, or a bound on the

ability to randomize update timings). This leads to the question|if we have a �xed

number of diverse instances, how many should be run, and how manyshould be kept

as standbys (not running, but started up on demand)? We found that standby routers

were less e�ective than increasingR, but only for small values ofR, indicating that

for large numbers of diverse instances, most instances could be set aside as standbys

to decrease runtime overhead. For example, ifR = 3, under the continuous-majority

strategy we attain a fault rate of 0.02%. IncreasingR to 4 reduced the fault rate

to 0.0006%, while instead using a standby router withR = 3 reduced the fault rate

to 0.0008%. This happens because buggy outputs are detected quickly enough that

failing over to a standby is nearly as e�ective as having it participate invoting at

every time step. Because of this, operators can achieve much of the bene�ts of a

larger number of instances, even if these additional instances arerun as lower-priority

(e.g., only updated during idle periods) standbys.

44

Waiting time: Di�erent voting algorithms provide di�erent tradeo�s between

waiting time (time from when a new best-route arrives, to when it is output by the

voter) and the fault rate. The master/slave strategy provides the smallest waiting

time (0.02 sec on average), but incurs a higher fault rate (0.0006% on average),

as incorrect routes are advertised for a short period whenever the master becomes

buggy. Continuous-majority has longer wait times (0.035 sec on average), but lower

fault rate (less than 0.00001% on average), as routes are not output until multiple

instances converge to the same result. The wait-for-consensusstrategy's performance

is a function of the parameterK |larger values of K increase wait time but decreases

fault rate. However, we found that increasingK to moderate sizes incurred less delay

than the pass-through time for a single instance, and hence setting K = R o�ered a

low fault rate with only minor increases in waiting time.

Update overhead: Finally, we compare the voting strategies in terms of their

e�ect on update overhead (number of routing updates they generate), and compare

them against a standard router (std. router). Intuitively, running multiple voters

within a router might seem to increase update overhead, as the voter may change

its result multiple times for a single routing update. However, in practice, we �nd

no substantial increase, as shown in Figure2.5, which plots a CDF of the number

of updates (measured over one second intervals). For the master/slave strategy this

is expected, since a single master almost always drives computation.In wait-for-

consensus, no updates are generated until all instances arrive at an answer, and hence

no more than one outbound update is generated per inbound update, as in a standard

router. Interestingly, the continuous-majority strategy also does not signi�cantly

increase update overhead. This happens because when an updateenters the system,

the voter's output will only change when the majority result changes, which can only

happen once per update.

45

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100
C

um
ul

at
iv

e
fr

ac
tio

n

Updates per 1-sec interval

cts. major
master

std. router
wait-3

Figure 2.5: E�ect of voting on update overhead.

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016
 0.018
 0.02

 0.01 0.1 1 10 100
 0

 200

 400

 600

 800

 1000

 1200

 1400

F
au

lt
ra

te
 [f

ra
ct

io
n]

N
um

be
r

of
 fa

ls
e-

ne
g

ev
en

ts

Convergence timeout (T) [sec]

cts. major,wait-3 fault-rate
cts. major,wait-3 false-neg

master fault-rate
master false-neg

Figure 2.6: E�ect of convergence time threshold.

Performance of fault detection

Protocols today often incorporate thresholds (such as BGP's MRAI timer) to rate-

limit updates. To evaluate the level of protection our scheme provides against unstable

instances, as well as the ability to distinguish steady-state from transient behavior,

we incorporated a con�gurable timeout parameter (T) in fault detection to identify

when a route becomes stable. Figure2.6 shows the tradeo� as this parameter varies

between thefalse negative rate(the number of times a non-buggy instance is treated

as buggy), and thefault rate (i.e., the false positive rate of the voter, or the fraction

of time a buggy route is treated as non-buggy). We found that asT increases,

the false negative rate decreases, as larger values ofT reduce the probability that

transient changes will be considered when voting. The false negative rate does not

vary among di�erent voting strategies, as fault detection is only performed on steady-

46

state outputs, and the algorithmic di�erences between the strategies disappear when

performed on outputs that are not dynamically changing. The faultrate increases

with T, as when a bug does occur, it takes longer to detect it. Interestingly, the

fault rate initially decreases withT; this happens because for low values ofT, more

instances are treated as buggy, giving fewer inputs to the voter and increasing the

probability of an incorrect decision. Overall, we found that it was possible to tune T

to simultaneously achieve a low fault rate, low false negative, and low detection time.

2.5.2 Processing overhead

We evaluate the overhead of running multiple instances using our hypervisor with

both XORP- and Quagga-based instances running on single-core 3 Ghz Intel Xeon

machines with 2 GB RAM. We measure theupdate pass-through timeas the amount

of time from when the BGP replayer sends a routing update to when aresulting

routing update is received at the monitor. However, some updatesmay not trigger

routing updates to be sent to neighbors, if the router decides to continue using the

same route. To deal with this case, we instrument the software router's source code

to determine the point in time when it decides to retain the same route. We also

instrument the kernel to measure theFIB pass-through time, as the amount of time

from when the BGP replayer sends an update to the time the new route is reected

in the router's FIB (which is stored as the routing table in the Linux kernel).

Figure 2.7 shows thepass-throughtime required for a routing change to reach

the FIB. We replayed a Routeviews update trace and varied the number of Quagga

instances from 1 to 31, running atop our router hypervisor on a single-core machine.

We found the router hypervisor increases FIB pass-through timeby 0.08% on average,

to 0.06 seconds. Our router hypervisor implementation runs in userspace, instead of

directly in the kernel, and with a kernel-based implementation this overhead would

be further reduced. Increasing the number of instances to 3 incurred an additional

47

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
C

um
ul

at
iv

e
fr

ac
tio

n

Time [sec]

fib-1
fib-3
fib-5

fib-11
fib-31

std. router

Figure 2.7: BTR pass-through time.

1.7% increase, and to 5 incurred a 4.6% increase. This happens because the multi-

ple instances contend for CPU resources (we found that with multicore CPUs this

overhead was substantially lower under heavy loads). To evaluate performance un-

der heavier loads, we increased the rate at which the replayer played back routing

updates by a factor of 3000x. Under this heavy load, FIB pass-through times slow

for both the standard router and BTR due to increased queuing delays. However,

even under these heavy loads, the BTR incurs a delay penalty of lessthan 23%. To

estimate e�ects on convergence, we also measured theupdate pass-through timeas

the time required for a received routing change to be sent to neighboring routers.

We found this time to be nearly identical to the FIB pass-through time when the

MRAI timer was disabled. as updates are sent immediately after updating the FIB.

When MRAI was enabled (even when set to 1 second, the lowest possible setting for

Quagga), the variation in delay across instances was dwarfed by delay incurred by

MRAI. Finally, we found that switching to the master/slave voting strategy reduces

pass-through delay, though it slightly increases the fault rate, asdiscussed previously

in Section2.5.1.

2.5.3 E�ect on convergence

Next, we study the e�ect of our design on network-wide convergence. We do this by

simulating a network of BTRs (each with eight virtual router instances) across three

48

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10
C

um
ul

at
iv

e
fr

ac
tio

n

Convergence time [sec]

CQ25

AS
3967

wait-3
std. router

Figure 2.8: Network-wide simulations, per-router convergence delay distribution.

network-level graphs: the entire AS-level topology (labeledAS in Figure 2.8) sam-

pled on Jan 20 2008, AS 3967's internal network topology as collected from Rocketfuel

(labeled 3967), and cliques (labeledCQ) of varying sizes (since a clique contains the

\worst case" for routing, allowing potential to explore alln! possible paths in a clique

of sizen). To determine ordering of when BTRs respond, we run our implementation

over routing updates, record pass-through times, and replay them within our simu-

lation framework. Since for the master/slave approach there is noe�ect on network

operation unless a bug is triggered (since the slaves only operate asstandbys), we

focus our evaluation on the other strategies.

We found several key results. First, as shown in Figure2.8, the voting schemes do

not produce any signi�cant change in convergence beyond the delay penalty described

in previous sections, as compared to a network only containing standard routers. We

found this delay penalty to be much smaller than propagation delays across the net-

work, and to be reduced further when MRAI is activated. As the number of instances

increases (up to the number of processor cores), continuous-majority's delay decreases,

because it becomes increasingly likely that one will �nish early. The opposite is true

for wait-for-consensus, as the delay of the slowest instances becomes increasingly

large. Next, while we have thus far considered avirtual router level deployment,

where voting is performed at each router, we also considered avirtual network de-

ployment, where voting is performed at the edges of the network.In our experiments

49

we ran eight virtual networks and found that this speeds up convergence, as routers

do not have to wait for multiple instances to complete processing before forwarding

updates. Hence, for small numbers of diverse instances, voting per-router has smaller

convergence delay. However, virtual-network approaches require substantially more

control overhead than the virtual-router voting schemes. To address this, we found

that simple compression schemes [16] that eliminate redundancy across updates could

reduce the vast majority of this overhead. Finally, to validate our simulations, we

set up small topologies on Emulab [44], injected routing events, and compared with

simulations of the same topology. We found no statistically signi�cantdi�erence.

2.6 Discussion

For simplicity, this paper discusses the one particular design point. However, our

architecture is amenable to deployment on varying levels of granularity:

Server-based operation: Instead of running the diverse instances within a single

router, their computations may be o�oaded to a set of dedicated servers running in

the network (e.g., an RCP-like platform [28]). These servers run the router software

in virtualized environments, and cross-check the results of routers running within the

network. When a buggy result is detected, virtual router instances may be migrated

into the network to replace the buggy instance. Alternatively, theservers may be

con�gured to operate inread-only mode, such that they may signal alarms to network

operators, rather than participate directly in routing.

Network-wide deployment: Instead of running instances of individual router

software in parallel, ensembles of routers may collectively run entirevirtual networks

in parallel. Here, the outputs of a router are not merged into a singleFIB, or as a single

stream of updates sent to its neighbors. Instead, each router maintains a separate

FIB for each virtual network, and voting is used at border routers to determine which

50

virtual network data packets should be sent on. The advantage of this approach is it

allows di�erent routing protocols to be used within each virtual network, making it

simpler to achieve diversity. For example, OSPF may be run in one network and IS-IS

in another. In addition, convergence speed may be improved, as individual physical

routers do not have to wait for their instances to reach a majoritybefore sending a

routing update.

Process-level deployment: Our design runs multiple instances of routing soft-

ware in parallel, and hence incurs some memory overhead. On many Internet routers

this is not an issue, due to low DRAM costs, and the fact that DRAM capacity

growth has far exceeded that of routing table growth. That said,if it is still desirable

to decrease memory usage, router software may be modi�ed to vote on a shared RIB

instead of a FIB. We found the RIB is by far the largest source of memory usage in

both Quagga and XORP, incurring 99.3% of total memory usage. Voting on a shared

RIB would reduce this overhead by eliminating the need to store separate copies of

the RIB across router instances. Here, voting could be performed across multiple

routing daemons (e.g., multiple BGP processes within a single instance of Cisco IOS)

to construct a single shared RIB. In addition to reducing memory usage, �ner-grained

diversity may speed reaction (by only cloning and restarting individual processes or

threads), and �ner-grained control (during times of load, only mission-critical com-

ponents may be cloned to reduce resource usage). However, code development may

become more challenging, since this approach relies on knowing which parts of code

are functionally equivalent. To address this, router software could be written to a

common API, to allow replication and composition of modules from di�erent code

bases while sharing state.

Leveraging existing redundancy: Instead of running multiple instances in par-

allel, a router may be able to leverage redundant executions taking place at other

routers in the network. For example, networks often provision redundant network

51

equipment to protect against physical failures. For example, the VRRP [58] proto-

col allows multiple routers to act collectively as a single router. Our architecture is

amenable to leveraging physical redundancy, as the multiple instances may be de-

ployed across the redundant router instances. In addition, all routers in the ISP

compute the sameegress setof BGP routes that are \equal" according to the �rst

few steps of the decision process that deal with BGP attributes [47, 28]. To lever-

age this redundancy, it may be possible to extend our architectureto support voting

across multiple router's egress sets.

2.7 Related Work

Software and data diversity has been widely applied in other areas ofcomputing,

including increasing server reliability [33], improving resilience to worm propaga-

tion [80], building survivable Internet services [62], making systems secure against

vulnerabilities [39], building survivable overlay networks [110], building fault tolerant

networked �le systems [30], protecting private information [108], and recovering from

memory errors [20]. Techniques have also been developed to minimize computational

overhead by eliminating redundant executions and redundant memory usage across

parallel instances [111, 56].

However as discussed in Section2.1.3, routing software presents new challenges

for SDD (e.g., routers must react quickly to network changes, have vast con�guration

spaces and execution paths, rely on distributed operations), as well as new opportu-

nities to customize SDD (routers have small dependence on past history, can achieve

the same objectives in di�erent ways, have well-de�ned interfaces). We address these

challenges and opportunities in our design. There has also been workstudying router

bugs and their e�ects [107, 74], and our design is inspired by these measurement

studies. Also, [27] used a graph-theoretic treatment to study the potential bene�ts of

52

diversity across physical routers (as opposed to diversity within arouter). As work

dealing with miscon�gurations [46, 47] and traditional fail-stop failures [15, 78, 75, 58]

becomes deployed we envision router bugs will make up an increasinglysigni�cant

roadblock in improving network availability.

Our work can be contrasted to techniques which attempt to prevent bugs by

formally verifying the code. These techniques are typically limited to small codebases,

and often require manual e�orts to create models of program behavior. For example,

with manual intervention, a small operating system kernel was formally veri�ed [69].

For routing, work has been done on languages to model protocol behavior (e.g., [55]),

however the focus of this work is on algorithmic behaviors of the protocol, as opposed

to other possible places where a bug can be introduced. In contrast, our approach

leverages a small and low-complexity hypervisor, which we envision being possible to

formally verify.

Our design leverages router virtualization to maintain multiple diverseinstances.

Router virtualization is an emerging trend gaining increased attention, as well as

support in commercial routers. In addition, our design is complementary to use of

models of router behavior [46, 47] and control-plane consistency checks [102, 83], as

these models/checks can be run in place of one or more of the router virtual instances.

Finally, systems such as MARE (Multiple Almost-Redundant Executions) [111] and

the Di�erence Engine [56] focus on reducing overheads from replication. MARE runs

a single instruction stream most of the time, and only runs redundant instruction

streams when necessary. The Di�erence Engine attains substantial savings in mem-

ory usage across VMs, through use of sub-page level sharing andin-core memory

compression. These techniques may be used to further reduce overheads of our de-

sign.

53

2.8 Summary

Implementation errors in routing software harm availability, security, and correctness

of network operation. In this chapter, we described how to improve resilience of

networks to bugs by applying Software and Data Diversity (SDD) techniques to router

design. Although these techniques have been widely used in other areas of computing,

applying them to routing introduces new challenges and opportunities, which we

address in our design. This chapter takes an important �rst step towards addressing

these problems by demonstrating diverse replication is both viable and e�ective in

building robust Internet routers. An implementation of our design shows improved

robustness to router bugs with some tolerable additional delay.

54

Chapter 3

Decoupling the Logical IP-layer

Topology from the Physical

Topology with VROOM

3.1 Introduction

In the previous chapter we presented the bug-tolerant router which masks bugs in

router software. While providing a more reliable router, the bug-tolerant router is still

plagued by the same problems of today's routers { that the distributed route selection

process causes disruption and that there is considerable human e�ort in managing a

network. In this chapter, we target those two issues.

We focus on network management as it is widely recognized as one of the most

important challenges facing the Internet. The cost of the people and systems that

manage a network typically exceeds the cost of the underlying nodes and links; in

addition, most network outages are caused by operator errors,rather than equipment

failures [68]. From routine tasks such as planned maintenance to the less-frequent

deployment of new protocols, network operators struggle to provide seamless service

55

in the face of changes to the underlying network. Handling change isdi�cult because

each change to the physical infrastructure requires a corresponding modi�cation to

the logical con�guration of the routers|such as recon�guring th e tunable parameters

in the routing protocols.

Logical refers to IP packet-forwarding functions, whilephysicalrefers to the phys-

ical router equipment (such as line cards and the CPU) that enablesthese functions.

Any inconsistency between the logical and physical con�gurationscan lead to unex-

pected reachability or performance problems. Furthermore, because of today's tight

coupling between the physical and logical topologies, sometimes logical-layer changes

are used purely as atool to handle physical changes more gracefully. A classic exam-

ple is increasing the link weights in Interior Gateway Protocols to \cost out" a router

in advance of planned maintenance [98]. In this case, a change in the logical topology

is not the goal, rather it is the indirect tool available to achieve the task athand, and

it does so with potential negative side e�ects.

In this chapter, we argue that breaking the tight coupling betweenphysical and

logical con�gurations can provide asingle, general abstraction that simpli�es network

management. Speci�cally, we propose VROOM (Virtual ROuters On the Move), a

new network-management primitive where virtual routers can move freely from one

physical router to another. In VROOM, physical routers merely serve as the carrier

substrate on which the actual virtual routers operate. VROOM can migrate a virtual

router to a di�erent physical router without disrupting the ow of tra�c or changing

the logical topology, obviating the need to recon�gure the virtualrouters while also

avoiding routing-protocol convergence delays. For example, if a physical router must

undergo planned maintenance, the virtual routers could move (in advance) to another

physical router in the same Point-of-Presence (PoP). In addition, edge routers can

move from one location to another by virtually re-homing the links that connect to

neighboring domains.

56

Realizing these objectives presents several challenges: (i)migratable routers: to

make a (virtual) router migratable, its \router" functionality must be separable from

the physical equipment on which it runs; (ii)minimal outages: to avoid disrupting

user tra�c or triggering routing protocol reconvergence, the migration should cause no

or minimal packet loss; (iii)migratable links: to keep the IP-layer topology intact, the

links attached to a migrating router must \follow" it to its new location. Fortunately,

the third challenge is addressed by recent advances in transport-layer technologies, as

discussed in Section3.2. Our goal, then, is to migrate router functionality from one

piece of equipment to another without disrupting the IP-layer topology or the data

tra�c it carries, and without requiring router recon�guration.

On the surface, virtual router migration might seem like a straight-forward ex-

tention to existing virtual machine migration techniques. This would involve copying

the virtual router image (including routing-protocol binaries, con�guration �les and

data-plane state) to the new physical router and freezing the running processes before

copying them as well. The processes and data-plane state would then be restored on

the new physical router and associated with the migrated links. However, the de-

lays in completing all of these steps would cause unacceptable disruptions for both

the data tra�c and the routing protocols. For virtual router migr ation to be viable

in practice, packet forwarding should not be interrupted, not even temporarily. In

contrast, the control plane can tolerate brief disruptions, sincerouting protocols have

their own retransmission mechansisms. Still, the control plane mustrestart quickly

at the new location to avoid losing protocol adjacencies with other routers and to

minimize delay in responding to unplanned network events.

In VROOM, we minimize disruption by leveraging the separation of the con-

trol and data planes in modern routers. We introduce adata-plane hypervisor|a

migration-aware interface between the control and data planes.This uni�ed interface

allows us to support migration between physical routers with di�erent data-plane

57

technologies. VROOM migrates only the control plane, while continuing to forward

tra�c through the old data plane. The control plane can start running at the new

location, and populate the new data plane while updating the old data plane in par-

allel. During the transition period, the old router redirects routing-protocol tra�c to

the new location. Once the data plane is fully populated at the new location, link

migration can begin. The two data planes operate simultaneously fora period of time

to facilitate asynchronous migration of the links.

To demonstrate the generality of our data-plane hypervisor, we present two pro-

totype VROOM routers|one with a software data plane (in the Linux kernel) and

the other with a hardware data plane (using a NetFPGA card [79]). Each virtual

router runs the Quagga routing suite [6] in an OpenVZ container [5]. Our software

extensions consist of three main modules that (i) separate the forwarding tables from

the container contexts, (ii) push the forwarding-table entries generated by Quagga

into the separate data plane, and (iii) dynamically bind the virtual interfaces and

forwarding tables. Our system supports seamless live migration of virtual routers

between the two data-plane platforms. Our experiments show that virtual router

migration causes no packet loss or delay when the hardware data plane is used, and

at most a few seconds of delay in processing control-plane messages.

The remainder of the chapter is structured as follows. Section3.2 presents back-

ground on exible transport networks and an overview of related work. Next, Sec-

tion 3.3 discusses how router migration would simplify existing network management

tasks, such as planned maintenance and service deployment, while also addressing

emerging challenges like power management. We present the VROOM architecture

in Section3.4, followed by the implementation and evaluation in Sections3.5and 3.6,

respectively. We briey discuss our on-going work on migration scheduling in Sec-

tion 3.7 and conclude in Section3.8.

58

!"#$%&'()&"*&+,,+-.%
/&+012"&$'3%$4"&5

!"#$%&'6

!"#$%&'7

82$9:+.'$&+012"&$'149$:;

<+=')&"*&+,,+-.%'$&+012"&$'0%$4"&5'

!"#$%&'()+:5%$>+4+&%
/&+012"&$'3%$4"&5

!"#$%&'6

!"#$%&'7

?)'&"#$%&

<-=')+:5%$>+4+&%'$&+012"&$'0%$4"&5'

Figure 3.1: Link migration in the transport networks

3.2 Background

One of the fundamental requirements of VROOM is \link migration", i.e., the links

of a virtual router should \follow" its migration from one physical node to another.

This is made possible by emerging transport network technologies. We briey describe

these technologies before giving an overview of related work.

3.2.1 Flexible Link Migration

In its most basic form, a link at the IP layer corresponds to a direct physical link

(e.g., a cable), making link migration hard as it involves physically moving link end

59

point(s). However, in practice, what appears as a direct link at theIP layer of-

ten corresponds to a series of connections through di�erent network elements at the

transport layer. For example, in today's ISP backbones, \direct"physical links are

typically realized by optical transport networks, where an IP link corresponds to a cir-

cuit traversing multiple optical switches [34, 104]. Recent advances inprogrammable

transport networks [34, 14] allow physical links between routers to be dynamically

set up and torn down. For example, as shown in Figure3.1(a), the link between

physical routers A and B is switched through a programmable transport network. By

signaling the transport network, the same physical port on router A can be connected

to router C after an optical path switch-over. Such path switch-over at the trans-

port layer can be done e�ciently, e.g., sub-nanosecond optical switching time has

been reported [90]. Furthermore, such switching can be performed across a wide-area

network of transport switches, which enables inter-POP link migration.

In addition to core links within an ISP, we also want to migrateaccess linkscon-

necting customer edge (CE) routers and provider edge (PE) routers, where only the

PE end of the links are under the ISP's control. Historically, access links correspond

to a path in the underlying access network, such as a T1 circuit in a time-division

multiplexing (TDM) access network. In such cases, the migration ofan access link

can be accomplished in similar fashion to the mechanism shown in Figure3.1(a), by

switching to a new circuit at the switch directly connected to the CE router. How-

ever, in traditional circuit-switched access networks, a dedicated physical port on

a PE router is required to terminate each TDM circuit. Therefore, ifall ports on a

physical PE router are in use, it will not be able to accommodate morevirtual routers.

Fortunately, as Ethernet emerges as an economical and exible alternative to legacy

TDM services, access networks are evolving topacket-awaretransport networks [12].

This trend o�ers important bene�ts for VROOM by eliminating the need for per-

customer physical ports on PE routers. In a packet-aware access network (e.g., a

60

virtual private LAN service access network), each customer access port is associated

with a label, or a \pseudo wire" [26], which allows a PE router to support multiple

logical access links on the same physical port. The migration of a pseudo-wire access

link involves establishing a new pseudo wire and switching to it at the multi-service

switch [12] adjacent to the CE.

Unlike conventional ISP networks, some networks are realized as overlays on top

of other ISPs' networks. Examples include commercial \Carrier Supporting Carrier

(CSC)" networks [36], and VINI, a research virtual network infrastructure overlaid

on top of National Lambda Rail and Internet2 [100]. In such cases, a single-hop link

in the overlay network is actually a multi-hop path in the underlying network, which

can be an MPLS VPN (e.g., CSC) or an IP network (e.g., VINI). Link migration

in an MPLS transport network involves switching over to a newly established label

switched path (LSP). Link migration in an IP network can be done by changing the

IP address of the tunnel end point.

3.2.2 Related Work

VROOM's motivation is similar, in part, to that of the RouterFarm work [14], namely,

to reduce the impact of planned maintenance by migrating router functionality from

one place in the network to another. However, RouterFarm essentially performs a

\cold restart", compared to VROOM's live (\hot") migration. Speci� cally, in Router-

Farm router migration is realized by re-instantiating a router instance at the new lo-

cation, which not only requires router recon�guration, but also introduces inevitable

downtime in both the control and data planes. In VROOM, on the other hand, we

perform live router migration without recon�guration or discernible disruption.

Recent advances in virtual machine technologies and their live migration capa-

bilities [38, 5] have been leveraged in server-management tools, primarily in data

centers. For example, Sandpiper [106] automatically migrates virtual servers across

61

a pool of physical servers to alleviate hotspots. Usher [77] allows administrators to

express a variety of policies for managing clusters of virtual servers. Remus [40] uses

asynchronous virtual machine replication to provide high availability to server in the

face of hardware failures. In contrast, VROOM focuses on leveraging live migration

techniques to simplify management in the networking domain.

Network virtualization has been proposed in various contexts. Early work includes

the \switchlets" concept, in which ATM switches are partitioned to enable dynamic

creation of virtual networks [99]. More recently, the CABO architecture proposes to

use virtualization as a means to enable multiple service providers to share the same

physical infrastructure [48]. Outside the research community, router virtualization

has already become available in several forms in commercial routers[37, 61]. In

VROOM, we take an additional step not only to virtualize the router functionality,

but also to decouple the virtualized router from its physical host and enable it to

migrate.

VROOM also relates to recent work on minimizing transient routing disruptions

during planned maintenance. A measurement study of a large ISP showed that more

than half of routing changes were planned in advance [59]. Network operators can

limit the disruption by recon�guring the routing protocols to direct t ra�c away from

the equipment undergoing maintenance [98, 52]. In addition, extensions to the routing

protocols can allow a router to continue forwarding packets in the data plane while

reinstalling or rebooting the control-plane software [93, 32]. However, these techniques

require changes to the logical con�guration or the routing software, respectively. In

contrast, VROOM hides the e�ects of physical topology changes inthe �rst place,

obviating the need for point solutions that increase system complexity while enabling

new network-management capabilities, as discussed in the next section.

62

3.3 Network Management Tasks

In this section, we present three case studies of the applications of VROOM. We show

that the separation between physical and logical, and the router migration capability

enabled by VROOM, can greatly simplify existing network-management tasks. It can

also provide network-management solutions to other emerging challenges. We explain

why the existing solutions (in the �rst two examples) are not satisfactory and outline

the VROOM approach to addressing the same problems.

3.3.1 Planned Maintenance

Planned maintenance is a hidden fact of life in every network. However, the state-

of-the-art practices are still unsatisfactory. For example, software upgrades today

still require rebooting the router and re-synchronizing routing protocol states from

neighbors (e.g., BGP routes), which can lead to outages of 10-15 minutes [14]. Dif-

ferent solutions have been proposed to reduce the impact of planned maintenance

on network tra�c, such as \costing out" the equipment in advance. Another exam-

ple is the RouterFarm approach of removing the static binding between customers

and access routers to reduce service disruption time while performing maintenance

on access routers [14]. However, we argue that neither solution is satisfactory, since

maintenance ofphysical routers still requires changes to thelogical network topology,

and requires (often human interactive) recon�gurations and routing protocol recon-

vergence. This usually implies more con�guration errors [68] and increased network

instability.

We performed an analysis of planned-maintenance events conducted in a Tier-1

ISP backbone over a one-week period. Due to space limitations, we only mention the

high-level results that are pertinent to VROOM here. Our analysis indicates that,

among all the planned-maintenance events that have undesirable network impact

63

today (e.g., routing protocol reconvergence or data-plane disruption), 70% could be

conducted without any network impact if VROOM were used. (This number assumes

migration between routers with control planes of like kind. With moresophisticated

migration strategies, e.g., where a \control-plane hypervisor" allows migration be-

tween routers with di�erent control plane implementations, the number increases to

90%.) These promising numbers result from the fact that most planned-maintenance

events were hardware related and, as such, did not intend to makeany longer-term

changes to the logical-layer con�gurations.

To perform planned maintenance tasks in a VROOM-enabled network, network

administrators can simply migrate all the virtual routers running ona physical router

to other physical routers before doing maintenance and migrate them back afterwards

as needed, without ever needing to recon�gure any routing protocols or worry about

tra�c disruption or protocol reconvergence.

3.3.2 Service Deployment and Evolution

Deploying new services, like IPv6 or IPTV, is the life-blood of any ISP.Yet, ISPs

must exercise caution when deploying these new services. First, they must ensure

that the new services do not adversely impact existing services. Second, the necessary

support systems need to be in place before services can be properly supported. (Sup-

port systems include con�guration management, service monitoring, provisioning, and

billing.) Hence, ISPs usually start with a small trial running in a controlled environ-

ment on dedicated equipment, supporting a few early-adopter customers. However,

this leads to a \success disaster" when the service warrants widerdeployment. The

ISP wants to o�er seamless service to its existing customers, and yet also restructure

their test network, or move the service onto a larger network to serve a larger set of

customers. This \trial system success" dilemma is hard to resolve ifthe logical notion

of a \network node" remains bound to a speci�cphysical router.

64

VROOM provides a simple solution by enabling network operators to freely mi-

grate virtual routers from the trial system to the operational backbone. Rather than

shutting down the trial service, the ISP can continue supporting the early-adopter

customers while continuously growing the trial system, attractingnew customers, and

eventually seamlessly migrating the entire service to the operational network.

ISPs usually deploy such service-oriented routers as close to theircustomers as

possible, in order to avoid backhaul tra�c. However, as the services grow, the geo-

graphical distribution of customers may change over time. With VROOM, ISPs can

easily reallocate the routers to adapt to new customer demands.

3.3.3 Power Savings

VROOM not only provides simple solutions to conventional network-management

tasks, but also enables new solutions to emerging challenges such aspower manage-

ment. It was reported that in 2000 the total power consumption of the estimated

3.26 million routers in the U.S. was about 1.1 TWh (Tera-Watt hours) [91]. This

number was expected to grow to 1.9 to 2.4TWh in the year 2005 by three di�erent

projection models [91], which translates into an annual cost of about 178-225 million

dollars [81]. These numbers do not include the power consumption of the required

cooling systems.

Although designing energy-e�cient equipment is clearly an importantpart of the

solution [57], we believe that network operators can alsomanage a network in a

more power-e�cient manner. Previous studies have reported that Internet tra�c has

a consistent diurnal pattern caused by human interactive network activities. How-

ever, today's routers are surprisingly power-insensitive to the tra�c loads they are

handling|an idle router consumes over 90% of the power it requires when working at

maximum capacity [31]. We argue that, with VROOM, the variations in daily tra�c

volume can be exploited to reduce power consumption. Speci�cally, the size of the

65

physical network can be expanded and shrunk according to tra�cdemand, by hiber-

nating or powering down the routers that are not needed. The best way to do this

today would be to use the \cost-out/cost-in" approach, which inevitably introduces

con�guration overhead and performance disruptions due to protocol reconvergence.

VROOM provides a cleaner solution: as the network tra�c volume decreases

at night, virtual routers can be migrated to a smaller set of physical routers and

the unneeded physical routers can be shut down or put into hibernation to save

power. When the tra�c starts to increase, physical routers canbe brought up again

and virtual routers can be migrated back accordingly. With VROOM,the IP-layer

topology stays intact during the migrations, so that power savingsdo not come at the

price of user tra�c disruption, recon�guration overhead or protocol reconvergence.

Our analysis of data tra�c volumes in a Tier-1 ISP backbone suggests that, even

if only migrating virtual routers within the same POP while keeping the same link

utilization rate, applying the above VROOM power management approach could save

18%-25% of the power required to run the routers in the network.As discussed in

Section3.7, allowing migration across di�erent POPs could result in more substantial

power savings.

3.4 VROOM Architecture

In this section, we present the VROOM architecture. We �rst describe the three

building-blocks that make virtual router migration possible|router virtualization,

control and data plane separation, and dynamic interface binding.We then present

the VROOM router migration process. Unlike regular servers, modern routers typi-

cally have physically separate control and data planes. Leveragingthis unique prop-

erty, we introduce adata-plane hypervisorbetween the control and data planes that

enables virtual routers to migrate across di�erent data-plane platforms. We describe

66

!"#$%&'()*+,-./

0,1$-/'-.

2#3'4%&)%3-./5'&.)1%36%37

!"#$%&'()%3-./5'&.

89:

89:

2'-')
!('3.

;+3-/+()
!('3.

<%/-,'()*+,-./

;+3-/+()
!('3.

<%/-,'()*+,-./

;+3-/+()
!('3.

<%/-,'()*+,-./

2'-')
!('3.

2'-')
!('3.

8=:

2'-'>?('3.)"#?./@%$+/8=:

A,33.()%3-./5'&.

Figure 3.2: The architecture of a VROOM router

!"#

$%&'()*+,"-./01,2

$%&'()*+,"-./01,3

!"#

$%&'()*+,"-./01,2 $%&'()*+,"-./01,2

4*/*,/1*56),78-9,#:

$%&'()*+,"-./01,2

1-./(;<,=0''*<0'

7*:,>.;;0+,'0/.?,5-1,
104(10)/(;<,1-./(;<,=0''*<0'

7,/@,A,/#,:

7B:,"0=-/0,)-;/1-+,?+*;0,9(/%
104(10)/(-;,-5,1-./(;<,=0''*<0'

7,/C,A,/D,:

7):,E-.B+0,4*/*,?+*;0',4.1(;<
'&;)%1-;-.',+(;F,=(<1/(-;

7,/D,A,/G,:

74:,"0=-H0,-+4,4*/*,?+*;0,
*;4,104(10)/(-;,/.;;0+'

7,/G,:

4*/*,/1*56),78-9,I:

$%&'()*+,"-./01,3

!"#

$%&'()*+,"-./01,3

!"#

$%&'()*+,"-./01,3

104(10)/(-;,-5,1-./(;<,=0''*<0'

Figure 3.3: VROOM's novel router migration mechanisms (the times atthe bottom
of the sub�gures correspond to those in Figure3.4)

in detail the three migration techniques that minimize control-plane downtime and

eliminate data-plane disruption|data-plane cloning, remote control plane, and dou-

ble data planes.

3.4.1 Making Virtual Routers Migratable

Figure 3.2 shows the architecture of a VROOM router that supports virtualrouter

migration. It has three important features that make migration possible: router

virtualization, control and data plane separation, and dynamic interface binding, all

of which already exist in some form in today's high-end commercial routers.

67

Router Virtualization: A VROOM router partitions the resources of a physical

router to support multiple virtual router instances. Each virtual router runs indepen-

dently with its own control plane (e.g., applications, con�gurations,routing protocol

instances and routing information base (RIB)) and data plane (e.g.,interfaces and

forwarding information base (FIB)). Such router virtualization support is already

available in some commercial routers [37, 61]. The isolation between virtual routers

makes it possible to migrate one virtual router without a�ecting theothers.

Control and Data Plane Separation: In a VROOM router, the control and data

planes run in separateenvironments. As shown in Figure3.2, the control planes of

virtual routers are hosted in separate \containers" (or \virtual environments"), while

their data planes reside in thesubstrate, where each data plane is kept in separate

data structures with its own state information, such as FIB entries and access control

lists (ACLs). Similar separation of control and data planes already exists in today's

commercial routers, with control plane running on the CPU(s) andmain memory,

while the data plane runs on line cards that have their own computing power (for

packet forwarding) and memory (to hold the FIBs). This separation allows VROOM

to migrate the control and data planes of a virtual router separately (as discussed in

Section3.4.2and 3.4.2).

Dynamic Interface Binding: To enable router migration and link migration, a

VROOM router should be able todynamically set up and change the binding between

a virtual router's FIB and its substrate interfaces(which can be physical or tunnel

interfaces), as shown in Figure3.2. Given the existing interface binding mechanism

in today's routers that maps interfaces with virtual routers, VROOM only requires

two simple extensions. First, after a virtual router is migrated, this binding needs to

be re-established dynamically on the new physical router. This is essentially the same

as if this virtual router were just instantiated on the physical router. Second, link

migration in a packet-aware transport network involves changing tunnel interfaces in

68

!"#$%!&'()*%+,"-.

(%("!.+,"-.+

)/.0,1!"0"#/+2'03+('*!)$'"0

4)$)&-2)0%+,2"0'0*

/$)22&)04&,"-.+5,"0$!"2+-2)0%+4"60$'(%7

$8 $'(%$9 $: $; $< $=

"24+0"4%,"0$!"2+
-2)0%

4)$)+
-2)0%

0%6+0"4%

"24+0"4%

0%6+0"4%

!%("$%+,"0$!"2+-2)0%

4"#>2%+
4)$)+

-2)0%/8

: 8 ; ? <

: $#00%2+/%$#-

;

?

<
-!%&,"-.

;&: ;&8

;&:@
;&8@

$?

/$%-/

Figure 3.4: VROOM's router migration process

the router, as shown in Figure3.1. In this case, the router substrate needs to switch

the binding from the old tunnel interface to the new one on-the-y1.

3.4.2 Virtual Router Migration Process

Figures3.3 and 3.4 illustrate the VROOM virtual router migration process. The �rst

step in the process involves establishing tunnels between the source physical router

A and destination physical router B of the migration (Figure3.3(a)). These tunnels

allow the control plane to send and receive routing messages afterit is migrated (steps

2 and 3) but before link migration (step 5) completes. They also allow the migrated

control plane to keep its data plane on A up-to-date (Figure3.3(b)). Although the

control plane will experience a short period of downtime at the end of step 3 (memory

copy), the data plane continues working during the entire migrationprocess. In fact,

after step 4 (data-plane cloning), the data planes on both A and B can forward tra�c

simultaneously (Figure3.3(c)). With these double data planes, links can be migrated

from A to B in an asynchronous fashion (Figure3.3(c) and (d)), after which the data

plane on A can be disabled (Figure3.4). We now describe the migration mechanisms

in greater detail.

1In the case of a programmable transport network, link migration happens inside the transport
network and is transparent to the routers.

69

Control-Plane Migration

Two things need to be taken care of when migrating the control plane: the router

image, such as routing-protocol binaries and network con�guration �les, and the

memory, which includes the states of all the running processes. When copying the

router image and memory, it is desirable to minimize the total migrationtime, and

more importantly, to minimize the control-plane downtime (i.e., the timebetween

when the control plane is check-pointed on the source node and when it is restored on

the destination node). This is because, although routing protocolscan usually tolerate

a brief network glitch using retransmission (e.g., BGP uses TCP retransmission, while

OSPF uses its own reliable retransmission mechanism), a long control-plane outage

can break protocol adjacencies and cause protocols to reconverge.

We now describe how VROOM leverages virtual machine (VM) migrationtech-

niques to migrate the control plane in steps 2 (router-image copy)and 3 (memory

copy) of its migration process, as shown in Figure3.4.

Unlike general-purpose VMs that can potentially be running completely di�erent

programs, virtual routers from the same vendor run the same (usually small) set

of programs (e.g., routing protocol suites). VROOM assumes thatthe same set of

binaries are already available on every physical router. Before a virtual router is

migrated, the binaries are locally copied to its �le system on the destination node.

Therefore, only the router con�guration �les need to be copied over the network,

reducing the total migration time (as local-copy is usually faster than network-copy).

The simplest way to migrate the memory of a virtual router is to check-point the

router, copy the memory pages to the destination, and restore the router, a.k.a. stall-

and-copy [5]. This approach leads to downtime that is proportional to the memory

size of the router. A better approach is to add an iterativepre-copy phase before

the �nal stall-and-copy [38], as shown in Figure3.4. All pages are transferred in

the �rst round of the pre-copy phase, and in the following rounds,only pages that

70

were modi�ed during the previous round are transferred. This pre-copy technique

reduces the number of pages that need to be transfered in the stall-and-copy phase,

reducing the control plane downtime of the virtual router (i.e., thecontrol plane is

only \frozen" between t3 and t4 in Figure3.4).

Data-Plane Cloning

The control-plane migration described above could be extended to migrate the data

plane, i.e., copy all data-plane states over to the new physical node. However, this

approach has two drawbacks. First, copying the data-plane states (e.g., FIB and

ACLs) is unnecessary and wasteful, because the information thatis used to generate

these states (e.g., RIB and con�guration �les) is already available in the control

plane. Second, copying the data-plane state directly can be di�cultif the source and

destination routers use di�erent data-plane technologies. For example, some routers

may use TCAM (ternary content-addressable memory) in their data planes, while

others may use regular SRAM. As a result, the data structures that hold the state

may be di�erent.

VROOM formalizes the interface between the control and data planes by introduc-

ing a data-plane hypervisor, which allows a migrated control plane to re-instantiate

the data plane on the new platform, a process we calldata-plane cloning . That is,

only the control plane of the router is actually migrated. Once the control plane is

migrated to the new physical router, itclonesits original data plane by repopulating

the FIB using its RIB and reinstalling ACLs and other data-plane states2 through the

data-plane hypervisor (as shown in Figure3.2). The data-plane hypervisor provides

a uni�ed interface to the control plane that hides the heterogeneity of the underly-

2Data dynamically collected in the old data plane (such as NetFlow) can be copied and merged
with the new one. Other path-speci�c statistics (such as queue length) will be reset as the previous
results are no longer meaningful once the physical path changes.

71

ing data-plane implementations, enabling virtual routers to migratebetween di�erent

types of data planes.

Remote Control Plane

As shown in Figure3.3(b), after VR1's control plane is migrated from A to B, the

natural next steps are to repopulate (clone) the data plane on B and then migrate

the links from A to B. Unfortunately, the creation of the new data plane can not

be done instantaneously, primarily due to the time it takes to install FIB entries.

Installing one FIB entry typically takes between one hundred and a few hundred

microseconds [23]; therefore, installing the full Internet BGP routing table (about

250k routes) could take over 20 seconds. During this period of time, although data

tra�c can still be forwarded by the old data plane on A, all the routing instances in

VR1's control plane can no longer send or receive routing messages. The longer the

control plane remains unreachable, the more likely it will lose its protocol adjacencies

with its neighbors.

To overcome this dilemma, A's substrate starts redirecting all the routing messages

destined to VR1 to B at the end of the control-plane migration (time t4 in Figure3.4).

This is done by establishing a tunnel between A and B for each of VR1'ssubstrate

interfaces. To avoid introducing any additional downtime in the control plane, these

tunnels are established before the control-plane migration, as shown in Figure 3.3(a).

With this redirection mechanism, VR1's control plane not only can exchange routing

messages with its neighbors, it can also act as theremote control plane for its old

data plane on A and continue to update the old FIB when routing changes happen.

Double Data Planes

In theory, at the end of the data-plane cloning step, VR1 can switch from the old

data plane on A to the new one on B by migrating all its links from A to B simultane-

72

ously. However, performing accurate synchronous link migration across all the links

is challenging, and could signi�cantly increase the complexity of the system (because

of the need to implement a synchronization mechanism).

Fortunately, because VR1 hastwo data planes ready to forward tra�c at the end

of the data-plane cloning step (Figure3.4), the migration of its links does not need to

happen all at once. Instead, each link can be migrated independentof the others, in

an asynchronous fashion, as shown in Figure3.3(c) and (d). First, router B creates a

new outgoing link to each of VR1's neighbors, while all data tra�c continues to ow

through router A. Then, the incoming links can be safely migrated asynchronously,

with some tra�c starting to ow through router B while the remaining tra�c still

ows through router A. Finally, once all of VR1's links are migrated torouter B, the

old data plane and outgoing links on A, as well as the temporary tunnels, can be

safely removed.

3.5 Prototype Implementation

In this section, we present the implementation of two VROOM prototype routers.

The �rst is built on commodity PC hardware and the Linux-based virtualization

solution OpenVZ [5]. The second is built using the same software but utilizing the

NetFPGA platform [79] as the hardware data plane. We believe the design presented

here is readily applicable to commercial routers, which typically have the same clean

separation between the control and data planes.

Our prototype implementation consists of three new programs, asshown in Figure

3.5. These includevirtd , to enable packet forwarding outside of the virtual envi-

ronment (control and data plane separation);shadowd, to enable each VE to install

routes into the FIB; and bindd (data plane cloning), to provide the bindings between

the physical interfaces and the virtual interfaces and FIB of each VE (data-plane

73

!"#$%

&'%((%

!"#$"%&#'()*$+&),-%"

)*$+',"-

#(*. +/*0. /1%.+2.

./0

/1%.+2.

./1

/1%.+2.

./2

3)$,.

3'$)#'%&4%,$"

5,),&4%,$"

),-%"0),-%"1),-%"2

./6
7)8"&#'')&9'$)":);

#)4..

<*$(:
'#

=")>?@A

Figure 3.5: The design of the VROOM prototype routers (with two types of data
planes)

hypervisor). We �rst discuss the mechanisms that enable virtual router migration

in our prototypes and then present the additional mechanisms we implemented that

realize the migration.

3.5.1 Enabling Virtual Router Migration

We chose to use OpenVZ [5], a Linux-based OS-level virtualization solution, as the

virtualization environment for our prototypes. As running multiple operating systems

for di�erent virtual routers is unnecessary, the lighter-weight OS-level virtualization

is better suited to our need than other virtualization techniques, such as full virtu-

alization and para-virtualization. In OpenVZ, multiple virtual environments (VEs)

running on the same host share the same kernel, but have separate virtualized re-

sources such as name spaces, process trees, devices, and network stacks. OpenVZ

also provides live migration capability for running VEs3.

3The current OpenVZ migration function uses the simple \stall-and-copy" mechanism for memory
migration. Including a \pre-copy" stage [38] in the process will reduce the migration downtime.

74

In the rest of this subsection, we describe in a top-down order thethree compo-

nents of our two prototypes that enable virtual router migration. We �rst present

the mechanism that separates the control and data planes, and then describe the

data-plane hypervisor that allows the control planes to update the FIBs in the shared

data plane. Finally, we describe the mechanisms that dynamically bind the interfaces

with the FIBs and set up the data path.

Control and Data Plane Separation

To mimic the control and data plane separation provided in commercial routers, we

move the FIBs out of the VEs and place them in a shared but virtualized data plane,

as shown in Figure3.5. This means that packet forwarding no longer happens within

the context of each VE, so it is una�ected when the VE is migrated.

As previously mentioned, we have implemented two prototypes with di�erent

types of data planes|a software-based data plane (SD) and a hardware-based data

plane (HD). In the SD prototype router, the data plane resides in the root context

(or \VE0") of the system and uses the Linux kernel for packet forwarding. Since the

Linux kernel (2.6.18) supports 256 separate routing tables, the SD router virtualizes

its data plane by associating each VE with a di�erent kernel routing table as its FIB.

In the HD router implementation, we use the NetFPGA platform con�gured with

the reference router provided by Stanford [79]. The NetFPGA card is a 4-port gigabit

ethernet PCI card with a Virtex 2-Pro FPGA on it. With the NetFPGA a s the data

plane, packet forwarding in the HD router does not use the host CPU, thus more

closely resembling commercial router architectures. The NetFPGAreference router

does not currently support virtualization. As a result, our HD router implementation

is currently limited to only one virtual router per physical node.

75

Data-Plane Hypervisor

As explained in Section3.4, VROOM extends the standard control plane/data plane

interface to a migration-aware data-plane hypervisor. Our prototype presents a rudi-

mentary data-plane hypervisor implementation which only supportsFIB updates.

(A full-edged data-plane hypervisor would also allow the con�guration of other data

plane states.) We implemented thevirtd program as the data-plane hypervisor.

virtd runs in the VE0 and provides an interface for virtual routers to install/remove

routes in the shared data plane, as shown in Figure3.5. We also implemented the

shadowdprogram that runs inside each VE and pushes route updates from the control

plane to the FIB through virtd .

We run the Quagga routing software suite [6] as the control plane inside each VE.

Quagga supports many routing protocols, including BGP and OSPF. In addition to

the included protocols, Quagga provides an interface inzebra, its routing manager,

to allow the addition of new protocol daemons. We made use of this interface to

implement shadowdas a client ofzebra. zebra provides clients with both the ability

to notify zebra of route changes and to be noti�ed of route changes. Asshadowd

is not a routing protocol but simply a shadowing daemon, it uses only the route

redistribution capability. Through this interface, shadowdis noti�ed of any changes

in the RIB and immediately mirrors them to virtd using remote procedure calls

(RPCs). Each shadowdinstance is con�gured with a unique ID (e.g., the ID of the

virtual router), which is included in every message it sends tovirtd . Based on this

ID, virtd can correctly install/remove routes in the corresponding FIB uponreceiving

updates from ashadowdinstance. In the SD prototype, this involves using the Linux

iproute2 utility to set a routing table entry. In the HD prototype, this involve s using

the device driver to write to registers in the NetFPGA.

76

Dynamic Interface Binding

With the separation of control and data planes, and the sharing ofthe same data

plane among multiple virtual routers, the data path of each virtualrouter must be

set up properly to ensure that (i) data packets can be forwardedaccording to the

right FIB, and (ii) routing messages can be delivered to the right control plane.

We implemented thebindd program that meets these requirements by providing

two main functions. The �rst is to set up the mapping between a virtual router's

substrate interfaces and its FIB after the virtual router is instantiated or migrated,

to ensure correct packet forwarding. (Note that a virtual router's substrate interface

could be either a dedicated physical interface or a tunnel interface that shares the same

physical interface with other tunnels.) In the SD prototype,bindd establishes this

binding by using the routing policy management function (i.e., \ip rule")provided by

the Linux iproute2 utility. As previously mentioned, the HD prototype is currently

limited to a single table. Once NetFPGA supports virtualization, a mechanism similar

to the \ip rule" function can be used to bind the interfaces with the FIBs.

The second function ofbindd is to bind the substrate interfaces with the vir-

tual interfaces of the control plane. In both prototypes, this binding is achieved by

connecting each pair of substrate and virtual interfaces to a di�erent bridge using

the Linux brctl utility. In the HD prototype, each of the four physical ports on the

NetFPGA is presented to Linux as a separate physical interface, so packets destined

to the control plane of a local VE are passed from the NetFPGA to Linux through

the corresponding interface.

3.5.2 Realizing Virtual Router Migration

The above mechanisms set the foundation for VROOM virtual router migration in the

OpenVZ environment. We now describe the implementations of data-plane cloning,

remote control plane, and double data planes.

77

Although migration is transparent to the routing processes running in the VE,

shadowdneeds to be noti�ed at the end of the control plane migration in order to

start the \data plane cloning". We implemented a function inshadowdthat, when

called, triggersshadowdto requestzebra to resend all the routes and then push them

down to virtd to repopulate the FIB. Note that virtd runs on a �xed (private) IP

address and a �xed port on each physical node. Therefore, after a virtual router

is migrated to a new physical node, the route updates sent by itsshadowdcan be

seamlessly routed to the localvirtd instance on the new node.

To enable a migrated control plane to continue updating the old FIB (i.e., to act

as a \remote control plane"), we implemented invirtd the ability to forward route

updates to anothervirtd instance using the same RPC mechanism that is used by

shadowd. As soon as virtual router VR1 is migrated from node A to node B, the

migration script noti�es the virtd instance on B of A's IP address and VR1's ID. B's

virtd , besides updating the new FIB, starts forwarding the route updates from VR1's

control plane to A, whosevirtd then updates VR1's old FIB. After all of VR1's links

are migrated, the old data plane is no longer used, so B'svirtd is noti�ed to stop

forwarding updates. With B's virtd updating both the old and new FIBs of VR1

(i.e., the \double data planes"), the two data planes can forward packets during the

asynchronous link migration process.

Note that the data-plane hypervisor implementation makes the thecontrol planes

unaware of the details of a particular underlying data plane. As as result, migration

can occur between any combination of our HD and SD prototypes (i.e. SD to SD,

HD to HD, SD to HD, and HD to SD).

78

!" !#

$%&

$'&

$(&

$)&

*#'

!" !#

$%&

$'&

$(&

$)&

*#'

!" !#

$%&

$'&

$(&

$)&

*#'

!" !#

$%&

$'&

$(&

$)&

*#'

+',&-./01.&23.&45617250$&0/&*#' +(,&*#'89&:0$210;&<;7$.&456172.9&20&$)& +),&=5$>&$%&&&&&$'&59&9?52:3.@&20&$%&&&&&$)+A,&=5$>&$(&&&&&$'&59&9?52:3.@&20&$(&&&&&$)

Figure 3.6: The diamond testbed and the experiment process

3.6 Evaluation

In this section, we evaluate the performance of VROOM using our SDand HD proto-

type routers. We �rst measure the performance of the basic functions of the migration

process individually, and then place a VROOM router in a network and evaluate the

e�ect its migration has on the data and control planes. Speci�cally,we answer the

following two questions:

1. What is the impact of virtual router migration on data forwarding? Our evalu-

ation shows that it is important to have bandwidth isolation between migration tra�c

and data tra�c. With separate bandwidth, migration based on an HD router hasno

performance impact on data forwarding. Migration based on a SD router introduces

minimal delay increase and no packet loss to data tra�c.

2. What is the impact of virtual router migration on routing protocols? Our

evaluation shows that a virtual router running only OSPF in an Abilene-topology

network can support 1-second OSPFhello-interval without losing protocol adjacencies

during migration. The same router loaded with an additional full Internet BGP

routing table can support a minimal OSPFhello-interval of 2 seconds without losing

OSPF or BGP adjacencies.

3.6.1 Methodology

Our evaluation involved experiments conducted in the Emulab tesbed[44]. We pri-

marily used PC3000 machines as the physical nodes in our experiments. The PC3000

79

is an Intel Xeon 3.0 GHz 64-bit platform with 2GB RAM and �ve Gigabit Ethernet

NICs. For the HD prototype, each physical node was additionally equipped with

a NetFPGA card. All nodes in our experiments were running an OpenVZ patched

Linux kernel 2.6.18-ovz028stab049.1. For a few experiments we also used the lower

performance PC850 physical nodes, built on an Intel Pentium III 850MHz platform

with 512MB RAM and �ve 100Mbps Ethernet NICs.

We used three di�erent testbed topologies in our experiments:

The diamond testbed: We use the 4-node diamond-topology testbed (Figure3.6)

to evaluate the performance of individual migration functions and the impact of

migration on the data plane. The testbed has two di�erent con�gurations, which have

the same type of machines as physical node n0 and n2, but di�er in the hardware

on node n1 and n3. In theSD con�guration, n1 and n3 are regular PCs on which

we install our SD prototype routers. In theHD con�guration, n1 and n3 are PCs

each with a NetFPGA card, on which we install our HD prototype routers. In the

experiments, virtual router VR1 is migrated from n1 to n3 throughlink n1! n3.

The dumbbell testbed: We use a 6-node dumbbell-shaped testbed to study the

bandwidth contention between migration tra�c and data tra�c. In the testbed,

round-trip UDP data tra�c is sent between a pair of nodes while a virtual router is

being migrated between another pair of nodes. The migration tra�cand data tra�c

are forced to share the same physical link.

The Abilene testbed: We use a 12-node testbed (Figure3.7) to evaluate the impact

of migration on the control plane. It has a topology similar to the 11-node Abilene

network backbone [11]. The only di�erence is that we add an additional physical node

(Chicago-2), to which the virtual router on Chicago-1 (V5) is migrated. Figure 3.7

shows the initial topology of the virtual network, where 11 virtualrouters (V1 to

V11) run on the 11 physical nodes (except Chicago-2) respectively.

80

!"#$$%"

!&''()#%"

*+,-.'/"%",

0#',#,-12$(3"')"4

5+&,$+'

1627#/+89

:';2#'#<+%2,

1627#/+8=

>"?-@+4A

B#,62'/$+'-3C1C

.$%#'$#

DE9

DE= DEF

DEG

DEH DEI

DEJ

DEK

DEL

DE9M

DE99

Figure 3.7: The Abilene testbed

!

"

#

$

%

&

'

! "!("!!(#!!($!!(%!!(&!!(

)*+,-./01/.0*2-3

45
+

-/
63

-7
08

93
:

;*3<-89/=/9*+< >0<?/9*+</15@- A89*+</=/.-3*+- B.59C58C/3-2*<

Figure 3.8: Virtual router memory-copy time with di�erent numbers of routes

3.6.2 Performance of Migration Steps

In this subsection, we evaluate the performance of the two main migration functions

of the prototypes|memory copy and FIB repopulation.

Memory copy: To evaluate memory copy time relative to the memory usage of the

virtual router, we load the ospfd in VR1 with di�erent numbers of routes. Table 3.1

lists the respective memory dump �le sizes of VR1. Figure3.8 shows the total time it

takes to complete the memory-copy step, including (1) suspend/dump VR1 on n1, (2)

copy the dump �le from n1 to n3, (3) resume VR1 on n3, and (4) set up the bridging

(interface binding) for VR1 on n3. We observe that as the number of routes becomes

81

Table 3.1: The memory dump �le size of virtual router with di�erent numbers of
OSPF routes

Routes 0 10k 100k 200k 300k 400k 500k

Size (MB) 3.2 24.2 46.4 58.4 71.1 97.3 124.1

Table 3.2: The FIB repopulating time of the SD and HD prototypes

Data plane type Software data plane (SD) Hardware data plane (HD)
Number of routes 100 1k 10k 15k 100 1k 10k 15k

FIB update time (sec) 0.1946 1.9318 19.3996 31.2113 0.0008 0.0074 0.0738 0.1106
Total time (sec) 0.2110 2.0880 20.9851 33.8988 0.0102 0.0973 0.9634 1.4399

larger, the time it takes to copy the dump �le becomes the dominatingfactor of the

total memory copy time. We also note that when the memory usage becomes large,

the bridging setup time also grows signi�cantly. This is likely due to CPU contention

with the virtual router restoration process, which happens at the same time.

FIB repopulation: We now measure the time it takes VR1 to repopulate the new

FIB on n3 after its migration. In this experiment, we con�gure the virtual router

with di�erent numbers of static routes and measure the time it takes to install all the

routes into the FIB in the software or hardware data plane. Table3.2 compares the

FIB update time and total time for FIB repopulation. FIB update tim e is the time

virtd takes to install route entries into the FIB, while total time also includes the

time for shadowdto send the routes tovirtd . Our results show that installing a FIB

entry into the NetFPGA hardware (7.4 microseconds) is over 250 times faster than

installing a FIB entry into the Linux kernel routing table (1.94 milliseconds). As can

be expected the update time increases linearly with the number of routes.

3.6.3 Data Plane Impact

In this subsection, we evaluate the inuence router migration has on data tra�c. We

run our tests in both the HD and SD cases and compare the results.We also study

the importance of having bandwidth isolation between the migration and data tra�c.

82

Zero impact: HD router with separate migration bandwidth

We �rst evaluate the data plane performance impact of migrating a virtual router

from our HD prototype router. We con�gure the HD testbed suchthat the migration

tra�c from n1 to n3 goes through the direct link n1! n3, eliminating any potential

bandwidth contention between the migration tra�c and data tra�c .

We run the D-ITG tra�c generator [41] on n0 and n2 to generate round-trip

UDP tra�c. Our evaluation shows that, even with the maximum packet rate the D-

ITG tra�c generator on n0 can handle (sending and receiving 64-byte UDP packets

at 91k packets/s), migrating the virtual router VR1 from n1 to n3 (including the

control plane migration and link migration) does not have any performance impact

on the data tra�c it is forwarding|there is no delay increase or pack et loss4. These

results are not surprising, as the packet forwarding is handled by the NetFPGA,

whereas the migration is handled by the CPU. This experiment demonstrates that

hardware routers with separate migration bandwidth can migrate virtual routers with

zero impact on data tra�c.

Minimal impact: SD router with separate migration bandwidt h

In the SD router case, CPU is the resource that could potentially become scarce

during migration, because the control plane and data plane of a virtual router share

the same CPU. We now study the case in which migration and packet forwarding

together saturate the CPU of the physical node. As with the HD experiments above,

we use link n1! n3 for the migration tra�c to eliminate any bandwidth contention.

In order to create a CPU bottleneck on n1, we use PC3000 machineson n0 and

n2 and use lower performance PC850 machines on n1 and n3. We migrate VR1 from

n1 to n3 while sending round-trip UDP data tra�c between nodes n0 and n2. We

4We hard-wire the MAC addresses of adjacent interfaces on each physical nodes to eliminate the
need for ARP request/response during link migration.

83

vary the packet rate of the data tra�c from 1k to 30k packets/s and observe the

performance impact the data tra�c experiences due to the migration. (30k packets/s

is the maximum bi-directional packet rate a PC850 machine can handlewithout

dropping packets.)

Somewhat surprisingly, the delay increase caused by the migration isonly no-

ticeable when the packet rate is relatively low. When the UDP packet rate is at 5k

packets/s, the control plane migration causes sporadic round-trip delay increases up

to 3.7%. However, when the packet rate is higher (e.g., 25k packets/s), the change in

delay during the migration is negligible (< 0.4%).

This is because the packet forwarding is handled by kernel threads, whereas the

OpenVZ migration is handled by user-level processes (e.g.,ssh, rsync , etc.). Al-

though kernel threads have higher priority than user-level processes in scheduling,

Linux has a mechanism that prevents user-level processes from starving when the

packet rate is high. This explains the delay increase when migration is inprogress.

However, the higher the packet rate is, the more frequently the user-level migration

processes are interrupted, and more frequently the packet handler is called. There-

fore, the higher the packet rate gets, the less additional delay the migration processes

add to the packet forwarding. This explains why when the packet rate is 25k pack-

ets/s, the delay increase caused by migration becomes negligible. This also explains

why migration does not cause any packet drops in the experiments.Finally, our

experiments indicate that the link migration does not a�ect forwarding delay.

Reserved migration bandwidth is important

In 3.6.3and 3.6.3, migration tra�c is given its own link (i.e., has separate bandwidth).

Here we study the importance of this requirement and the performance implications

for data tra�c if it is not met.

84

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500 600 700 800 900

D
el

ay
 in

cr
ea

se
 (

%
)

Data traffic rate (Mbps)

Figure 3.9: Delay increase of the data tra�c, due to bandwidth contention with
migration tra�c

Table 3.3: Packet loss rate of the data tra�c, with and without migration tra�c

Data tra�c rate (Mbps) 500 600 700 800 900
Baseline (%) 0 0 0 0 0.09

w/ migration tra�c (%) 0 0 0.04 0.14 0.29

We use the dumbbell testbed in this experiment, where migration tra�c and data

tra�c share the same bottleneck link. We load theospfd of a virtual router with 250k

routes. We start the data tra�c rate from 500 Mbps, and gradually increase it to 900

Mbps. Because OpenVZ uses TCP (scp) for memory copy, the migration tra�c only

receives the left-over bandwidth of the UDP data tra�c. As the available bandwidth

decreases to below 300 Mbps, the migration time increases, which translates into a

longer control-plane downtime for the virtual router.

Figure 3.9 compares the delay increase of the data tra�c at di�erent rates.Both

the average delay and the delay jitter increase dramatically as the bandwidth con-

tention becomes severe. Table3.3 compares the packet loss rates of the data tra�c

at di�erent rates, with and without migration tra�c. Not surprising ly, bandwidth

contention (i.e., data tra�c rate � 700 Mbps) causes data packet loss. The above

results indicate that in order to minimize the control-plane downtime of the virtual

85

router, and to eliminate the performance impact to data tra�c, operators should

provide separate bandwidth for the migration tra�c.

3.6.4 Control Plane Impact

In this subsection, we investigate the control plane dynamics introduced by router

migration, especially how migration a�ects the protocol adjacencies. We assume a

backbone network running MPLS, in which its edge routers run OSPFand BGP,

while its core routers run only OSPF. Our results show that, with default timers,

protocol adjacencies of both OSPF and BGP are kept intact, and at most one OSPF

LSA retransmission is needed in the worst case.

Core Router Migration

We con�gure virtual routers VR1, VR6, VR8 and VR10 on the Abilenetestbed

(Figure 3.7) as edge routers, and the remaining virtual routers as core routers. By

migrating VR5 from physical node Chicago-1 to Chicago-2, we observe the impact of

migrating a core router on OSPF dynamics.

No events during migration: We �rst look at the case in which there are no

network events during the migration. Our experiment results showthat the control-

plane downtime of VR5 is between 0.924 and 1.008 seconds, with an average of 0.972

seconds over 10 runs.

We start with the default OSPF timers of Cisco routers: hello-interval of 10

seconds anddead-interval of 40 seconds. We then reduce thehello-interval to 5, 2,

and 1 second in subsequent runs, while keeping thedead-interval equal to four times

the hello-interval. We �nd that the OSPF adjacencies between the migrating VR5

and its neighbors (VR4 and VR6) stay up in all cases. Even in the mostrestrictive

1-secondhello-interval case, at most one OSPF hello message is lost and VR5 comes

back up on Chicago-2 before its neighbors' dead timers expire.

86

Events happen during migration: We then investigate the case in which there are

events during the migration and the migrating router VR5 misses theLSAs triggered

by the events. We trigger new LSAs by apping the link between VR2 and VR3. We

observe that VR5 misses an LSA when the LSA is generated during VR5's 1-second

downtime. In such a case, VR5 gets a retransmission of the missing LSA 5 seconds

later, which is the default LSAretransmit-interval.

We then reduce the LSAretransmit-interval from 5 seconds to 1 second, in order

to reduce the time that VR5 may have a stale view of the network. This change

brings down the maximum interval between the occurrence of a link ap and VR5's

reception of the resulting LSA to 2 seconds (i.e., the 1 second control plane downtime

plus the 1 second LSAretransmit-interval).

Edge Router Migration

Here we con�gure VR5 as the �fth edge router in the network thatruns BGP in

addition to OSPF. VR5 receives a full Internet BGP routing table with255k routes

(obtained from RouteViewson Dec 12, 2007) from an eBGP peer that is not included

in Figure 3.7, and it forms an iBGP full mesh with the other four edge routers.

With the addition of a full BGP table, the memory dump �le size grows from

3.2 MB to 76.0 MB. As a result, it takes longer to suspend/dump the virtual router,

copy over its dump �le, and resume it. The average downtime of the control plane

during migration increases to between 3.484 and 3.594 seconds, withan average of

3.560 seconds over 10 runs. We observe that all of VR5's BGP sessions stay intact

during its migration. The minimal integer hello-interval VR5 can support without

breaking its OSPF adjacencies during migration is 2 seconds (withdead-interval set

to 8 seconds). In practice, ISPs are unlikely to set the timers muchlower than the

default values, in order to shield themselves from faulty links or equipment.

87

3.7 Migration Scheduling

This paper primarily discusses the question of migration mechanisms (\how to mi-

grate") for VROOM. Another important question is the migration scheduling (\where

to migrate"). Here we briey discuss the constraints that need tobe considered when

scheduling migration and several optimization problems that are part of our ongoing

work on VROOM migration scheduling.

When deciding where to migrate a virtual router, several physicalconstraints need

to be taken into consideration. First of all, an \eligible" destination physical router for

migration must use asoftware platformcompatible with the original physical router,

and have similar (or greater)capabilities (such as the number of access control lists

supported). In addition, the destination physical router must have su�cient resources

available, includingprocessing power(whether the physical router is already hosting

the maximum number of virtual routers it can support) andlink capacity (whether

the links connected to the physical router have enough unused bandwidth to handle

the migrating virtual router's tra�c load). Furthermore, the redundancyrequirement

of the virtual router also needs to be considered|today a routeris usually connected

to two di�erent routers (one as primary and the other as backup)for redundancy. If

the primary and backup are migrated to the same node, physical redundancy will be

lost.

Fortunately, ISPs typically leave enough \head room" in link capacities to absorb

increased tra�c volume. Additionally, most ISPs use routers from one or two vendors,

with a small number of models, which leaves a large number of eligible physical routers

to be chosen for the migration.

Given a physical router that requires maintenance, the question of where to mi-

grate the virtual routers it currently hosts can be formulated asan optimization

problem, subject to all the above constraints. Depending on the preference of the

operator, di�erent objectives can be used to pick the best destination router, such

88

as minimizing the overall CPU load of the physical router, minimizing themaximum

load of physical links in the network, minimizing the stretch (i.e., latency increase) of

virtual links introduced by the migration, or maximizing the reliability of the network

(e.g., the ability to survive the failure of any physical node or link). However, �nding

optimal solutions to these problems may be computationally intractable. Fortunately,

simple local-search algorithms should perform reasonably well, since the number of

physical routers to consider is limited (e.g., to hundreds or small thousands, even for

large ISPs) and �nding a \good" solution (rather than an optimal one) is acceptable

in practice.

Besides migration scheduling for planned maintenance, we are also working on the

scheduling problems of power savings and tra�c engineering. In thecase of power

savings, we take the power prices in di�erent geographic locations into account and

try to minimize power consumption with a certain migration granularity (e.g., once

every hour, according to the hourly tra�c matrices). In the caseof tra�c engineering,

we migrate virtual routers to shift load away from congested physical links.

3.8 Summary

VROOM is a new network-management primitive that supports live migration of vir-

tual routers from one physical router to another. To minimize disruptions, VROOM

allows the migrated control plane to clone the data-plane state at the new loca-

tion while continuing to update the state at the old location. VROOM temporarily

forwards packets using both data planes to support asynchronous migration of the

links. These designs are readily applicable to commercial router platforms. Exper-

iments with our prototype system demonstrate that VROOM does not disrupt the

data plane and only briey freezes the control plane. In the unlikelyscenario that a

89

control-plane event occurs during the freeze, the e�ects are largely hidden by existing

mechanisms for retransmitting routing-protocol messages.

90

Chapter 4

Seamless Edge Link Migration

with Router Grafting

4.1 Introduction

With VROOM we enable migrating an entire virtual router. While this greatly sim-

pli�es many network management tasks, in some instances migratingan entire virtual

router is too coarse of a granularity. In this chapter we present amore �ne-grained

migration mechanism.

In nature, grafting is where a part of one living organism (e.g., tissuefrom a

plant) is removed and fused into another organism. We apply this concept to routers

to enable new network-management capabilities which allow network changes to be

made with minimal disruption. We call this router grafting. With router grafting, we

view routers in terms of their parts and enable splitting these partsfrom one router

and merging them into another. This capability makes the view of the network a

more uid one where the topology can readily change, allowing operators to adapt

their networks without disruption in the service o�ered to users. We envision router

grafting to eventually be applicable to arbitrary subsets of routerresources and/or

91

protocols. However, in this chapter we take the �rst step towards this vision by

focusing how to \graft" a BGP session and the underlying link from one router to

another.

4.1.1 A Case for Router Grafting

The ability to adapt the network is an essential component of network management.

Unfortunately, today's routers and routing protocols make change di�cult. Changes

to the network cause disruption, forcing operators to weigh the bene�t of making a

change against the potential impact performing the change will have. For example,

today, the basic task of rehoming a BGP session requires shutting down the session,

recon�guring the new router, restarting the session, and exchanging a large amount

of routing information typically leading to downtimes of several minutes. Further

complicating matters is the fact that service-level agreements with customers often

prohibit events that result in downtime without receiving prior approval and schedul-

ing a maintenance window. This hand-cu�s the operator. In this section we provide

several motivating examples of why seamless migration is needed andwhy it would

be desirable to do at the level of individual sessions.

Load balancing across blades in a cluster router: Today's high-end routers

have modular designs consisting of many cards|processor blades for running routing

processes and interface cards for terminating links|spread overmultiple chassis. In

essence, the router itself is a large distributed system. Load balancing is an important

function in distributed systems, and routers are no exception|today's routers often

run near their limits of processing capacity [13]. Unfortunately, routers are not built

with load balancing in mind. A BGP session is associated with a routing process on a

particular blade upon establishment, making it di�cult to shift load to a nother blade.

A common approach used with Web servers is to drain load by directingnew requests

to other servers and waiting for existing requests to complete. Unfortunately, this

92

technique is not applicable to routers, since routing sessions run inde�nitely and unlike

web services have persistent state. However, with the ability to migrate individual

sessions, achieving better utilization of the router's processing capabilities is possible.

Rehoming a customer: An ISP homes a customer to a router based on ge-

ographic proximity and the availability of a router slot that can accommodate the

customer's request [54]. However, this is done only at the time when a customer

initiates service, based on the state of the network at that time. Rehoming might

be necessary if the customer upgrades to a new service (such as multicast, IPv6, or

advanced QoS or monitoring features) available only on a subset of routers. Rehom-

ing is also necessary when an ISP upgrades or replaces a router andneeds to move

sessions from the old router to the new one. Customer rehoming involves moving

the edge link|which can be done quickly because of recent innovations in layer-two

access networks|as well as the BGP session.

Planned maintenance: Maintenance is a fact of life for network operators, yet,

even though maintenance is planned in advance, little can be done to keep the router

running. Consider a simple task of replacing a power supply. The bestcommon

practice is for operators to recon�gure the routing protocols todirect tra�c away

from that router and, once the tra�c stops owing, to take the r outer o�ine. Un-

fortunately, this approach only works for core routers within an ISP where alternate

paths are available. At the edge of the network, an attractive alternative would be

to graft all of the BGP sessions with neighboring networks to otherrouters to avoid

disruptions in service. Migrating at the level of individual sessions is preferable to

migrating all of the sessions and the routing processes as a group,since �ne-grain

migration allows multiple di�erent routers to absorb only a small amount of extra

load during the maintenance interval.

Tra�c engineering: Tra�c engineering is the act of recon�guring the network

to optimize the ow of tra�c, to minimize congestion. Today, tra�c e ngineering in-

93

volves adjusting the routing-protocol parameters to coax the routers into computing

new paths that better match the o�ered tra�c, at the expense of transient disruptions

during routing convergence. Router grafting enables a new approach to tra�c engi-

neering, where certain customers are rehomed to an edge routerthat better matches

the tra�c patterns. For example, if most of a customer's tra�c lea ves the ISP's net-

work at a particular location, that customer could be rehomed closer to that egress

point. In other words, we no longer need to consider the tra�c matrix as �xed when

performing tra�c engineering|instead, we can change the tra�c m atrix to better

match the backbone topology and routing by having tra�c enter the network at a

new location.

4.1.2 Challenges and Contributions

The bene�ts of router grafting are numerous. However, the design of today's routers

and routing protocols make realizing router grafting challenging. Grafting a BGP

session involves (i) migrating the underlying TCP connection, (ii) exchanging routing

state, (iii) moving the routing-protocol con�guration from one router to another, and

(iv) migrating the underlying link. Ideally, all these actions need to beperformed

in a manner that is completely transparent (i.e., without involving the routers and

operators in neighboring networks) and does not disrupt forwarding and routing (i.e.,

data packets are not dropped and routing adjacencies remain up).

Unfortunately, we cannot simply apply existing techniques for application-level

session migration. Moving a BGP session to a di�erent router changes the network

topology and hence, the routing decisions at other routers. In particular, the remote

end-point of the session must be informed of any routing changes|that is, any di�er-

ences between the \best routes" chosen by the new and old homingpoints. Similarly,

other routers in the ISP network need to change how they route toward destinations

94

reachable through that remote end-point|they need to learn that these destinations

are now reachable through the new homing location.

In addition, we cannot simply apply our proposed techniques for virtual-router

migration (as discussed in Chapter3), for two main reasons. First, the two physical

routers may not be compatible|they may run di�erent routing soft ware (e.g., Cisco,

Juniper, Quagga, or XORP). Second, we want to migrate and mergeonly a single

BGP session, not the entire routing process, as many scenarios bene�t from �ner gran-

ularity. Instead, we view virtual-router migration as a complementary management

primitive.

Fortunately, extending existing router software to support grafting requires only

modest changes. The essential state that must be migrated is often well separated in

the code. This makes it possible to export the state from one router and import it

to another without much complexity. In this chapter, we present an architecture for

realizing router grafting and make the following contributions:

� Introduce the concept of router grafting, and realize an instance of it through

BGP session migration. We demonstrate that BGP session migration can be

performed in today's monolithic routing software, without much modi�cation or

refactoring of the code. Our fully-automated prototype router-grafting system

is built by using and extending Click, Linux, and Quagga.

� Achieve transparency, where the remote BGP session end-point isnot modi�ed

and is unaware migration is happening. We achieve this by bootstrapping a

routing session at the new homing location, with the old router emulating the

remote end-point. The new homing point then takes over the role ofthe old

router, sending the necessary routing updates to notify the remote end-point of

routing changes.

95

� Introduce optimizations to nearly eliminate the impact of migration onother

routers not directly involved in the migration. We achieve this by capitalizing

on the fact that the routers already have much of the routing information they

need, and that we know the identity of the old and new homing points.

� Describe an architecture where unplanned routing changes (suchas link failures)

during the grafting process do not a�ect correctness, and where packets are

delivered successfully even during the migration. At worst, packets temporarily

traverse a di�erent path than the control plane advertises|a common situation

during routing convergence.

� Present an optimization framework for tra�c engineering with router grafting

and develop algorithms that determine which tra�c end-points should migrate,

and where. Our experiments with Internet2 tra�c and topology data show

that router grafting allows the network to carry at least 25% moretra�c (at

the same level of performance) over optimizing routing alone.

The remainder of the chapter is organized as follows. Section4.2 discusses how

the operation of BGP makes router grafting challenging. In Section4.3 we present

the router grafting architecture, focusing only on the control plane. Section4.4 ex-

plains how we ensure correct routing and forwarding, even in the face of unplanned

routing changes. In Section4.5 we present our prototype, followed by a discussion of

optimizations that reduce the overhead of grafting a BGP session inSection4.6. We

present an evaluation of our prototype and proposed optimizations in Section4.7. In

Section4.8we present new algorithms for applying router grafting to tra�c engineer-

ing along with an evaluation of real tra�c on a real netwok. We wrap up with related

work in Section4.9 and the conclusion in Section4.10.

96

Figure 4.1: Migration protocol layers.

4.2 BGP Routing Within a Single AS

Grafting a BGP session is di�cult because BGP routing relies on manylayers in the

protocol stack and manycomponentswithin an AS. In this section, we present a brief

overview of BGP routing from the perspective of a single autonomous system (AS)

to identify the challenges our grafting solution must address.

4.2.1 Protocol Layers: IP, TCP, & BGP

As illustrated in Figure 4.1, two neighboring routers exchange BGP update messages

over a BGP session that runs on top of a TCP connection that, in turn, directs packets

over the underlying IP link(s) between them. As such, grafting a BGP session will

require moving the IP link, TCP connection, and BGP session from onelocation to

another.

IP link: An AS connects to neighboring ASes through IP links. While a link

could be a direct cable between two routers, these IP-layer links typically correspond

to multiple hops in an underlying layer-two network. For example, routers at an

97

exchange point often connect via a shared switch, and an ISP typically connects

to its customers over an access network. These layer-two networks are increasingly

programmable, allowing dynamic set-up and tear-down of layer-three links [104, 34,

14, 90]. This is illustrated in Figure 4.1 where the link between routers A and B is

through a programmable transport network which can be changedto connect routers

A and C. These innovations enable seamless migration of an IP link fromone location

to another within the scope of the layer-two network, such as rehoming a customer's

access link to terminate on a di�erent router in the ISP's network1.

TCP connection: The neighboring routers exchange BGP messages over an

underlying TCP connection. Unlike a conventional TCP connection between a Web

client and a Web server, the connection must stay \up" for long periods of time, as

the two routers are continuously exchanging messages. Further, each router sends

keep-alive messages to enable the other router to detect lapses inconnectivity. Upon

missing three keep-alive messages, a router declares the other router as dead and

discards all BGP routes learned from that neighbor. As such, grafting a BGP session

requires timely migration of the underlying TCP connection.

BGP session: Two adjacent routers form a BGP session by �rst establishing

a TCP session, then sending messages negotiating the properties of the BGP ses-

sion, then exchanging the \best route" for each destination pre�x. This process is

controlled by a state machine that speci�es what messages to exchange and how to

handle them. Once the BGP session is established, the two routers send incremental

update messages|announcing new routes and withdrawing routesthat are no longer

available. A router stores the BGP routes learned from its neighborin an Adj-RIB-in

table, and the routes announced to the neighbor in anAdj-RIB-out table. Each BGP

session has con�guration state that controls how a router �ltersand modi�es BGP

1Depending on the technology used to realize the layer-two network, the scope might be geo-
graphically contained, e.g., in the case of a packet access network,or might be signi�cantly more
spread out, e.g., in the case of a national footprint programmable optical transport network.

98

routes that it imports from (or exports to) the remote neighbor.As such, grafting a

BGP session requires transferring a large amount of RIB (Routing Information Base)

state, as well as moving the associated con�guration state.

4.2.2 Components: Blades, Routers, & ASes

A BGP session is associated with a routing process that runs on a processor blade

within one of the routers in a larger AS. As such, grafting a BGP session involves

extracting the necessary state from the routing process, transferring that state to

another location, and changing the routing decisions at other routers as needed.

Processor blade: The simplest router has a processor for running the routing

process, multiple interfaces for terminating links, and a switching fabric for directing

packets from one interface to another. The BGP routing processmaintains sessions

with multiple neighbors and runs a decision process over theAdj-RIB-in tables to

select a single \best" route for each destination pre�x. The routing process stores the

best route in aLoc-RIB table, and applies export policies to construct theAdj-RIB-

out tables and send the corresponding update messages to each neighbor.

IP router: Today's high-end routers are large distributed systems, consisting of

hundreds of interfaces and multiple processor blades spread overone or more chas-

sis. These routers run multiple BGP processes|one on each processor blade|each

responsible for a portion of the BGP sessions as shown in Figure4.2. For a cluster-

based router to scale, each BGP process runs its own decision process and exchanges

its \best" route with the other BGP processes in the router, usinga modi�ed ver-

sion of internal BGP (iBGP) [95]. This allows the distributed router to behave the

same way as a simple router that runs a single BGP process. Any BGP process can

handle any BGP session, since all processors can reach the interface cards through

the switching fabric. As such, grafting a BGP session from one bladeto another in

99

Figure 4.2: Migrating the session with X between route processor blades (from RP1
to RP2).

the same router (e.g., the session with X from RP1 to RP2 in Figure4.2) does not

require migrating the underlying layer-three link.

Autonomous System (AS): An AS consists of multiple, geographically-

distributed routers. Each router forms BGP sessions with neighboring routers in

other ASes, and uses iBGP to disseminate its \best" route to otherrouters within

the AS. The routers in the same AS also run an Interior Gateway Protocol (IGP),

such as OSPF or IS-IS to compute paths to reach each other. Each router in the

AS runs its own BGP process(es) and selects its own best route foreach pre�x. The

routers may come to di�erent decisions about the best route, notonly because they

learn di�erent candidate routes but also because the decision depends on the IGP

distances to other routers (in a practice known as hot-potato routing). This can be

seen in Figure4.3 where routers B and C have di�erent paths to the destinationd.

As such, grafting a BGP session from one router to another (e.g., the session with A

from router B to C in Figure 4.3) may change the BGP routing decisions.

4.3 Router Grafting Architecture

Seamless grafting of a BGP session relies on a careful progression through a number

of coordinated steps. These steps are summarized in Figure4.4, which shows a

100

Figure 4.3: Migrating session with A between routers (from B to C).

migrate-from router that hands o� one of its BGP sessions to amigrate-to router in

the same AS. These routers do not need to run the same softwareor be from the

same vendor|they need only have the added support for router grafting. When the

grafting process starts, the migrate-from router is responsiblefor handling a BGP

session with the remote end-point routerA (not shown). This BGP session with

router A is to be migrated. The migrate-from router begins exporting the routing

information and the migrate-to router is initialized with its own session-level data

structures and a copy of the policy con�guration, without actuallyestablishing the

session (Figure4.4(a)). Then, the TCP connection is migrated, followed by the

underlying link (Figure 4.4(b)). Finally, the migrate-to router imports the routing

state and updates the other routers (Figure4.4(c)), resulting in the migrate-to router

handling the BGP session with the remote end-point ((Figure4.4(d)). This section

focuses exclusively on control-plane operations, deferring discussion of the data plane

until Section 4.4.

4.3.1 Copying BGP Session Con�guration

Each BGP session end-point has a variety of con�guration state needed to establish

the session with the remote end-point (with a given IP address and AS number)

and apply policies for �ltering and modifying route announcements. The network

101

(a) Pre-con�g, Export RIB. (b) Migrate link and TCP.

(c) Import RIB. (d) After migration.
Figure 4.4: Router grafting mechanisms { migrating a session with Router A (not shown)
from router Migrate-from to router Migrate-to. The boxes marked bgpd and network stack
are the software programs. The boxes markedRIB A , conf ig A , and T CPA are the routing,
con�guration, and TCP state respectively.

operators, or an automated management system, con�gure thesession end-point by

applying con�guration commands at the router's command-line interface or uploading

a new con�guration �le. The router stores the con�guration information in various

internal data structures.

Rather than exporting these internal data structures, we capitalize on the fact that

the current con�guration is captured in a well-de�ned format in thecon�guration �le.

Our design simply \dumps" the con�guration �le for the migrate-from router, extracts

the commands relevant to the BGP session end-point, and applies these commands to

102

the migrate-to router, after appropriate translation to account for vendor-dependent

di�erences in the command syntax. This allows the migrate-to router to create its

own internal data structures for the con�guration information.

However, the migrate-to router is not yet ready to assume responsibility for the

BGP session. To �nish initializing the migrate-to router, we extend the BGP state

machine to include an `inactive' state, where the router can createdata structures

and import state for the session without attempting to communicate with the remote

end-point. The migrate-to router transitions from the `inactive' state to `established'

state when instructed by the grafting process.

4.3.2 Exporting & Resetting Run-Time State

A router maintains a variety of state for BGP session end-points. To meet our goals,

BGP grafting need only consider the Routing Information Bases (RIBs)|the other

state may be simply reinitialized at the migrate-to router2.

Routing Information Bases (RIBs): The most important state associated

with the BGP session-end-point is stored in the routing information bases|the Adj-

RIB-in and Adj-RIB-out . In our architecture, we dump the RIBs at the migrate-from

router to prepare for importing the information at the migrate-to router. While the

RIBs are represented di�erently on di�erent router platforms, the information they

store is standardized as part of the BGP protocol. In most routerimplementations,

the RIB data structure is factored apart from the rest of the routing software, and

many routers support commands for \dumping" the current RIBs. Even though

the RIB dump formats vary by vendor, de facto standards like thepopular MRT

format [10] do exist.

2Router grafting does not preclude the remaining state from being included, simply we chose
not to in order to keep code modi�cations at a minimum while still meeting our goals of (i) routing
protocol adjacencies staying up and (ii) all routing protocol messages being received.

103

State in the BGP state machine: A BGP session end-point stores information

about the BGP state machine. We can forgo migrating this state { the BGP session

is either `established' or not. If the session is in one of the not-established states,

we can simply close the session at the migrate-from router and start the migrate-to

router in the idle state. This does not trigger any transient disruption|since the

session is not \up" anyway. If the session at the migrate-from router is `established,'

we can start the new session at the migrate-to router in the `inactive' state.

BGP timers: BGP implementations also include a variety of timers, many of

which are vendor-dependent. For example, some routers use an MRAI (Minimum

Route Advertisement Interval) timer to pace the transmission of BGP update mes-

sages. This is purely a local operation at one end-point of the session, not requiring

any agreement with the remote end-point. Another common timer isthe keep-alive

interval that drives the periodic sending of heartbeat messages,and a hold timer for

detecting missing keep-alive messages from the remote end-point.Fortunately, miss-

ing a single keep-alive message, or sending the message slightly early or late, would

not erroneously detect a session failure because routers typicallywait for three missed

keep-alive messages before tearing down the session. As such, wedo not migrate BGP

timer values and instead simply initialize whatever timers are used at the migrate-to

router.

BGP statistics: BGP implementations maintain numerous statistics about each

session and even individual routes. These statistics, while broadly useful for network

monitoring, are not essential to the correct operation of the router. They only have

meaning at the local session end-point. In addition, these statistics are vendor de-

pendent and not well modularized in the router software implementations. As such,

we do not migrate these statistics and instead allow the migrate-to router to initialize

its own statistics as if it were establishing a new session.

104

4.3.3 Migrating TCP Connection & IP Link

As part of BGP session grafting, the TCP connection must move from the migrate-

from router to the migrate-to router. Because we do not assumeany support from

the remote end-point, the migrate-to router must use the same IP addresses and

sequence and acknowledgment numbers that the migrate-from router was using. In

BGP, IP addresses are used to uniquely identify the BGP session end-points and not

the router as a whole. Further, we assume the link between the remote end-point

and the migrate-from (or migrate-to) router is a single hop IP network where the IP

address is not used for reachability, but only for identi�cation. As such, the session

end-point can easily retain its address (and sequence and acknowledgment numbers)

when it moves. That is, the single IP address identifying the migratingsession can be

disassociated from the migrate-from router and associated with the migrate-to router.

Our architecture simply migrates the local state associated with the TCP connection

from one router to another.

As with any TCP migration technique, the network must endure a brief period

of time when neither router is responsible for the TCP connection. TCP has its own

retransmission mechanism that ensures that the remote end-point retransmits any

unacknowledged data. As long as the transient outage is short, the TCP connection

(and, hence, the BGP session) remains up. TCP implementations tolerate a period of

at least 100 seconds [24] without receiving an acknowledgment|signi�cantly longer

than the migration times we anticipate. The amount of TCP state is relatively small,

and the two routers are close to one another, leading to extremelyfast TCP migration

times.

The underlying link should be migrated (e.g., by changing the path in theunderly-

ing programmable transport network) close to the same time as theTCP connection

state, to minimize the transient disruption in connectivity. Still, the network may

need to tolerate a brief period of inconsistency where (say) the TCP connection

105

state has moved to the migrate-to router while the tra�c still ows via the migrate-

from router. During this period, we need to prevent the migrate-from router from

erroneously responding to TCP packets with a TCP RST packet thatresets the con-

nection. This is easily prevented by con�guring the migrate-from router's interface

to drop TCP packets sent to the BGP port (i.e., 179). The migrate-from route can

successfully deliver regulardata tra�c received during the transmission, as discussed

later in Section 4.4.

4.3.4 Importing BGP Routing State

Once link and connection migration are complete, the migrate-to router can move its

end-point of the BGP session from the `inactive' state to the `established' state. At

this time, the migrate-to router can begin \importing" the RIBs received from the

migrate-from router. However, the import process is not as simpleas merely loading

the RIB entries into its own internal data structures. The migrate-from and migrate-

to routers could easily have a di�erent view of the \best" route foreach destination

pre�x, as illustrated in Figure 4.5. In this scenario, before the migration, A reaches

E's pre�xes over the direct link between them, and B reaches E's pre�xes via A; after

the migration, A should reach E's pre�xes via B, and B should reach E'spre�xes

over the direct link. Similarly, suppose routers C and D connect to a common pre�x.

Before the migration, E follows the AS path \100 200 300" (throughC) to reach that

pre�x; after the migration E follows the AS path \100 200 400" (through D). Reaching

these conclusions requires routers A and B to rerun the BGP decision process based

on the new routes, and disseminate any routing changes to neighboring routers.

To make the process transparent to the remote end-point, we essentially emulate

starting up a new session at router B, with router A temporarily playing the role of

the remote end-point to announce the routes learned from E. Thisrequires router A

to replay the Adj-RIB-in state associated with E to router B. Router B stores these

106

Figure 4.5: A topology where AS 200 has migrate-from router A, migrate-to router
B, internal router F, and external routers C, D, and G, and remote end-point E.

routes and reruns its BGP decision process, as necessary, to compute the new best

routes to pre�xes E is announcing. This will cause update messagesto be sent to

other routers within the AS and, sometimes, to external routers(like C and D). If the

attributes of the route (e.g., the AS-PATH) do not change, as is the case in Figure4.5,

other ASes like AS 300 and AS 400 do not receiveany BGP update message (since,

from their point of view, the route has not changed), thus minimizingthe overhead

that router grafting imposes on the global BGP routing system.

Next, we update E with the best routes selected by B. Here, we take advantage

of the fact that E has already learned routes from the migrate-from router A. The

change in topology might change some of those routes, and we needto account for

that. To do so, the migrate-to router runs the BGP decision process to compare

its currently-selected best route to the route learned from the migrate-from router.

If the best route changes, B sends an update message to its neighbors, including

router E. This is in fact exactly the same operation the router wouldperform upon

receiving a route update from any of its neighbors. We expect thatrouters A and B

would typically have the same best route for most pre�xes, especially if A and B are

relatively close to each other in the IGP topology. As such, most of the time router B

107

would not change its best route and hence would not need to send anupdate message

to router E.

4.4 Correct Routing and Forwarding

Router grafting cannot be allowed to compromise the correct functioning of the net-

work. In this section, we discuss how grafting preserves correctrouting state (in the

control plane) and correct packet forwarding (in the data plane), even when unex-

pected routing changes occur in the middle of the grafting process.

4.4.1 Control Plane: BGP Routing State

Routing changes can, and do, happen at any time. BGP routers easily receive millions

of update messages a day, and these could arrive at any time duringthe grafting

process { while the migrate-from router dumps its routing state, while the TCP

connection and underlying link are migrated, or while the migrate-to router imports

the routing state and updates its routing decisions. Our grafting solution can correctly

handle BGP messages sent at any of these times.

While the migrate-from router dumps the BGP routing state: The goal

is to have the in-memory Routing Information Base (RIB) be consistent with the RIB

that was dumped as part of migration. Here, we take advantage ofthe fact that the

dumping process and the BGP protocol work on a per-pre�x basis.Consider a Adj-

RIB-in with three routes (p1, p2, p3) corresponding to three pre�xes, of which (p1

and p2) have been dumped already. When an update p3' (for the same pre�x as p3) is

received, the in-memory RIB can be updated since it corresponds to a pre�x that has

not been dumped, { to prevent dumping a pre�x while it is being updated, the single

entry in the RIB needs to be locked. If we receive an update p1' (for the same pre�x

as p1), processing it and updating the in-memory RIB without updating the dumped

108

image will cause the two to be inconsistent { delaying processing the update is an

option, but that would delay convergence as well. To solve this, we capitalize on BGP

being an incremental protocol where any new update message implicitly withdraws

the old one. Since we treat the dumped RIB as a sequence of updatemessages, we

can process the update immediately and append p1' to the end of the dumped RIB

to keep it consistent.

While the TCP connection and link are migrating: BGP update messages

may be sent while the TCP connection and the underlying link are migrating. If a

message is sent by the remote end-point, the message is not delivered and is correctly

retransmitted after the link and TCP connection come up at the migrate-to router.

If an update message is sent by another router to the migrate-from router over a

di�erent BGP session, there is not a problem because the migrate-from router is no

longer responsible for the recently-rehomed BGP session. Therefore, the migrate-from

router can safely continue to receive, select, and send routes. If an update message

is sent by another router to the migrate-to router over a di�erent BGP session, the

migrate-to router can install the route in its Adj-RIB-in for that session and, if needed,

update its selection of the best route { similar to when a route is received before the

migration process.

While the migrate-to router imports the routing state: The �nal case to

consider is when the migrate-to router receives a BGP update message while import-

ing the routing state for the rehomed session. Whether from the remote end-point

or another router, if the route is for a pre�x that was already imported, there is no

problem since the migration of that pre�x is complete. If it is for a pre�x that has not

already been imported, only messages from the remote end-point router need special

care. (BGP is an asynchronous protocol that does not depend onthe relative order of

processing for messages learned from di�erent neighbors.) A message from the remote

end-point must be processed after the imported route but we would like to process

109

it immediately. Since the update implicitly withdraws the previous announcement

(which is in the dump image), we mark the RIB entry to indicate that it is more

recent than the dump image. This way, we can skip importing any entries in the

dump image which have a more recent RIB update.

4.4.2 Data Plane: Packet Forwarding

Thus far, this paper has focused on the operation of the BGP control plane. However,

the control plane's only real purpose is to select paths for forwarding data packets.

Fortunately, grafting has relatively little data-plane impact. When moving a BGP

session between blades in the same router, the underlying link does not move and

the \best" routes do not change. As such, the forwarding table does not change, and

data packets travel as they did before grafting took place { the data tra�c continues

to ow uninterrupted.

The situation is more challenging when grafting a BGP session from onerouter to

another, where these two routers do not have the same BGP routing information and

do not necessarily make the same decisions. Because the TCP connection and link

are migratedbeforethe migrate-to router imports the routing state, the remote end-

point briey forwards packets through the migrate-to router based on BGP routes

learned from the migrate-from router. Since BGP route dissemination within the

AS (typically implemented using iBGP) ensures that each router learns at least one

route for each destination pre�x, the two routers will learn routes for the same set

of destinations. Therefore, the undesirable situation where the remote end-point

forwards packets that the migrate-to router cannot handle will not occur.

Although data packets are forwarded correctly, the end-to-end forwarding path

may temporarily di�er from the control-plane messages. For example, in Figure 4.5,

data packets sent by E will start traversing the path through AS 400, while E's

control plane still thinks the AS path goes through AS 300. These kinds of temporary

110

Figure 4.6: The router grafting prototype system.

inconsistencies are a normal occurrence during the BGP route-convergence process,

and do not disrupt the ow of tra�c. Once the migrate-to router � nishes importing

the routes, the remote end-point will learn the new best route andcontrol- and data-

plane paths will agree again.

Correct handling of data tra�c must also consider the packets routed toward

the remote end-point. During the grafting process, routers throughout the AS for-

ward these packets to the migrate-from router until they learn about the routing

change (i.e., the new egress point for reaching these destinations). Since the migrate-

from router knows where the link, TCP connection, and BGP sessionhave moved, it

can direct packets in ight there through temporary tunnels established between the

migrate-from router and the migrate-to router.

4.5 BGP Grafting Prototype

We have developed an initial prototype to demonstrate router grafting. Figure 4.6de-

picts the main components of the prototype. These include (i) a modi�ed Quagga [6]

routing software, (ii) the graft daemon for controlling the entire process, (iii) the

SockMi [21] kernel module for TCP migration, and (iv) a Click [72] based data plane

for implementing link migration.

111

The controlling entity in the prototype is the graft daemon. This is the entity that

initiates the BGP session grafting, interacting with each of the other components to

perform the necessary steps. We assume each graft daemon canbe reached by an

IP address. With this, the graft daemon on the migrate-from router will initiate a

TCP connection with the daemon on the migrate-to router. Once established, the

migration process follows the six general steps discussed in the following subsections.

4.5.1 Con�guring the Migrate-To Router

In our architecture, con�guration state is gleaned from a dump ofthe migrate-from

router's con�guration �le, rather than its internal data structu res. The graft daemon

�rst extracts BGP session con�guration from the con�guration � le of the migrate-from

router, including the rules for �ltering and modifying route announcements. Then the

extracted con�guration commands are applied to the migrate-to router. Our current

implementation includes a simplistic parser for Quagga's commands forcon�guring

BGP sessions3. In order to con�gure the migrate-to router before migrating the TCP

connection, we added an `inactive' state to the BGP state machine.We also added a

con�guration command to the Quagga command-line interface:

neighbor w.x.y.z inactive

that triggers the router to create all internal data structuresfor the session, without

attempting to open or accept a socket with the remote end-point.

4.5.2 Exporting Migrate-From BGP State

Once the migrate-to router is con�gured, the grafting process can proceed to the

second step, which is initiating the export of the routing state on the migrate-from

3As we add support for XORP, we will develop a more complete parser as the con�guration will
require translating between con�guration languages|generally a h ard problem, though easier in our
case because we focus on a relatively narrow aspect of the con�guration.

112

router. The grafting daemon on the migrate-from router initiatesthe export process

by calling a command in Quagga that we added:

neighbor w.x.y.z migrate out

When this command is executed, our modi�ed Quagga software traverses the internal

data structures, dumping the necessary routing state (Adj-RIB-in and the selected

routes in the loc-RIB) to a �le.

4.5.3 Exporting Migrate-From TCP State

Once the routing state is dumped, the modi�ed Quagga calls theexport socket

function as part of the SockMi API to migrate the TCP state. This function makes

an ioctl call to the kernel module, passing the socket's �le descriptor. TheSockMi

kernel module is a Linux kernel module for kernels 2.4 through 2.6|wetested with

kernel version 2.6.19.7. Theioctl call causes the kernel module to interact with

Linux's internal data structures. It removes the TCP connectionfrom the kernel,

writing the socket state to a character device. Note that part ofthis state is related

to the protocol itself (e.g., the current sequence number) as wellas the bu�ers (e.g.,

the receive queue and the transmit queue of packets sent, but not acknowledged).

When this state is written, the kernel module sends a signal to the graft daemon on

the migrate-from router, which can read from the character device and send to the

daemon on the migrate-to router.

4.5.4 Importing the TCP State

The next step is to initiate the import of the TCP state at the migrate-to router.

Upon receiving the state from the migrate-from router, the graft daemon on the

migrate-to router �rst noti�es Quagga that it is about to import st ate for a given

`inactive' session. This is done through a command we added:

113

neighbor w.x.y.z migrate in

Upon executing the command, our modi�ed Quagga invokes theimport socket func-

tion in the SockMi API. This function blocks until a TCP connection is imported.

During this time, the graft daemon makes anioctl to the SockMi kernel module. The

graft daemon then passes the TCP session state to a character device which is read

by the kernel module. The SockMi kernel module accesses the Linux data structures

to add a socket with that TCP connection state, which unblocks theimport socket

function.

4.5.5 Migrating the Layer-Three Link

At this point, the graft daemon of the migrate-to router triggersthe migration of the

underlying link. This includes removing the migrating session's IP address from the

migrate-from router, adding the IP address to the migrate-to router, and migrating

the layer-two link. As we did not have access to equipment to use a programmable

transport network, we instead built our own simple layer-two network that connects

both the migrate-from and migrate-to router to the remote end-point with a Click [72]

con�guration that emulates a `programmable transport'. This Click con�guration

performs a simple switching primitive that connects the remote end-point to either

the migrate-from or the migrate-to router. In one setting, packets from the migrate-

from router are sent to the remote end-point router, packets from the migrate-to

router are dropped, and packets from the remote end-point router are sent to the

migrate-from router. With the alternative setting, the reverse occurs, forming a link

between the migrate-to router and the remote-end point router. This switch value

is settable via a handler, making it accessible to the graft daemon running on the

migrate-from router.

114

4.5.6 Importing Routing State

As the �nal step, when the importing of the TCP connection is complete and the

import socket function is unblocked, the modi�ed Quagga reads the routing state,

which was stored in a �le when the local graft daemon read it in from the graft

daemon running on the migrate-from router. Much as the \normal"operation of

the router, which receives a BGP message from a socket and then calls a function to

handle the update, the importing process will read the Adj-RIB-in from a �le and call

the same function to process the routing update. For comparing the RIB from the

migrate-from router to the migrate-to router, the importing process reads the route

from the �le, looks up the route in the local RIB, and compares them. If they di�er,

it will use existing functions to send out the route to the peer.

4.6 Optimizations for Reducing Impact

Grafting a BGP session requires incrementally updating the remote end-point as

well as the other routers in the AS. In this section, we present optimizations that can

further reduce the tra�c and processing load imposed on routersnot directly involved

in the grafting process. These optimizations capitalize on the knowledge that grafting

is taking place and the routers' local copy of the routes previouslylearned from the

remote end-point. First, we discuss how we can keep routers fromsending unnecessary

updates to their eBGP neighbors. Second, we then discuss how themajority of iBGP

messages can be eliminated. Finally, we consider the intra-cluster router case where

the routes do not change.

4.6.1 Reducing Impact on eBGP Sessions

Importing routes on the migrate-to router, and withdrawing routes on the migrate-

from router, may trigger a urry of update messages to other BGP neighbors. Con-

115

sider the example in Figure4.5, where before grafting router E had announced

192.168.0.0/16 to router A, which in turn announced the route to B and C. Eventually

two things will happen: (i) the migrate-from router A will removethe 192.168.0.0/16

route from E and (ii) the migrate-to router B will add the 192.168.0.0/16 route from

E. Without any special coordination, these two events could happen in either order.

If A removes the route before B imports it, then A's eBGP neighbors(like router

C) may receive a withdrawal message, or briey learn a di�erent best route (should A

have other candidate routes), only to have A reannounce the route upon (re)learning

it from B. Alternatively, if B adds the route before A sends the withdrawal message to

C, then A may have both a withdrawal message and the subsequent(re)announcement

queued to send to router C, perhaps leading to redundant BGP messages. In the �rst

case, C may temporarily have no route at all, and in the second case Cmay receive

redundant messages. In both cases these e�ects are temporary, but we would like to

avoid them if possible.

To do so, rather than deleting the route, A can mark the route as \exported"|safe

in the knowledge that, if this route should remain the best route, A will soon (re)learn

it from the migrate-to router B. For example, suppose the route from E is the only

route for the destination pre�x|then A would certainly (re)learn t he route from B,

and could forgo withdrawing and reannouncing the route to its other neighbors. Of

course, if A does not receive the announcement (either after some period of time or

implicitly through receiving an update with a di�erent route for that p re�x), then it

can proceed with deleting the exported route.

So far we only considered the eBGP messages the migrate-from router would send.

A similar situation can occur on the eBGP sessions of the other routers in the AS (e.g.,

router F). This is because these other routers must be noti�ed (via iBGP) to no longer

go through A for the routes learned over the migrating session (i.e.,with E). Therefore,

the migrate-from router must send out withdrawal messages to its iBGP neighbors

116

and the migrate-to router must send out announcements to its iBGP neighbors. This

may result in the other routers in the AS (e.g., router F) temporarilywithdrawing

a route, temporarily sending a di�erent best route, or sending a redundant update

to their eBGP neighbors. Because of this, we have the migrate-from router send the

marked list to each of its iBGP neighbors and a noti�cation that theseall migrated

to the migrate-to router { this list is simply the list of pre�xes, not th e associated

attributes. We expect this list to be relatively small in terms of totalbytes. With

this list, the other routers in the AS can perform the same procedure, and eliminate

any unnecessary external messages.

4.6.2 Reducing Impact on iBGP Sessions

While using iBGP unmodi�ed is su�cient for dealing with the change in topology

brought about by migration, it is still desirable to reduce the impact migration has

on the iBGP sessions. Here, since the route-selection policy will likely be consistent

throughout an ISP's network, we can reduce the number of update messages sent by

extending iBGP (an easier task than modifying eBGP). When the migrate-from and

migrate-to routers select the same routes, the act of migration will not change the

decision. Since all routers are informed of the migration, the iBGP updates can be

suppressed (the migrate-from router withdrawing the route andthe migrate-to router

announcing the route). When the migrate-from and migrate-to routers select di�erent

routes, it is most likely due to di�erences in IGP distances. For the migrate-to router,

the act of migration will cause all routes learned from the remote end-point router to

become directly learned routes, as opposed to some distance away, and therefore the

migrate-to router will now prefer those routes (except when themigrate-to router's

currently selected route is also directly learned). This change in route selection causes

the migrate-to router to send updates to its iBGP neighbors notifying them of the

change. However, since it is more common to change routes, we canreduce the number

117

of updates that need to be sent with a modi�cation to iBGP where updates are sent

when the migrate-to router keeps a route instead of when it changes a route. Other

routers will be noti�ed of the migration and will assume the routes being migrated

will be selected unless told otherwise.

4.6.3 Eliminating Processing Entirely

Re-running the route-selection processes is essential as migration can change the

topology, and therefore change the best route. When migrating within a cluster

router, the topology does not change, and therefore we should be able to eliminate

processing entirely. The selected best route will be a consistent selection on every

blade. Therefore, even when migrating, while the internal data structures might need

to be adjusted, no decision process needs to be run and no external messages need to

be sent. In fact, there is no need for any internal messages to besent either. With

the modi�ed iBGP used for communication between route processorblades, the next

hop �eld is the next router, not the next processor blade { i.e., iBGP messages are

only used to exchange routes learned externally and do not a�ect how packets are

forwarded internally. Therefore, upon migration, there is no needto send an update

as the routes learned externally have already been exchanged.

While exchanging messages and running the decision process can be eliminated,

transferring the routing state from the exporting blade to the importing blade is still

needed. Being the blade responsible for a particular BGP session requires that the

local RIB have all of the routes learned over that session. While some may have been

previously announced by the migrate-from blade, not all of them were. Therefore,

we need to send over the Adj-RIB-in for the migrating session in order to know all

routes learned over that session as well as which subset of routesthe migrate-from

blade announced were associated with that session.

118

4.7 Performance Evaluation

In this section, we evaluate router grafting through experimentswith our proto-

type system and realistic traces of BGP update messages. We focus primarily on

control-plane overhead, since data-plane performance dependsprimarily on the la-

tency for link migration|where our solution simply leverages recent innovations in

programmable transport networks. First, we evaluate our prototype implementation

from Section4.5 to measure the grafting time and CPU utilization on the migrate-

from and migrate-to routers. Then we evaluate the e�ectivenessof our optimizations

from Section4.6in reducing the number of update messages received by other routers.

4.7.1 Grafting Delay and Overhead

The �rst experiment measures the impact of BGP session grafting on the migrate-

from and migrate-to routers. To do this we supplemented the topology shown in

Figure 4.5 with a router adjacent to E (in a di�erent AS) and a router adjacent to

B (in a di�erent AS). These two extra routers were fed a BGP update message trace

taken from RouteViews [7]. This essentially �lls the RIB of B and E with routes that

have the same set of pre�xes, but di�erent paths. We used Emulab[105] to run the

experiment on servers with 3GHz processors and 2GB RAM.4

The time it takes to complete the migration process is a function of the size of the

routing table. The larger it is, the larger the state that needs to betransferred and

the more routes that need to be compared. To capture this relationship, we varied

the RIB size by replaying multiple traces. The results, shown in Figure4.7, include

both the case where migration occurs between routers (when themigrate-to router

must run the BGP decision process) and the case where migration is between blades

(where the decision process does not need to run because the underlying topology

4This is roughly comparable to the route processors used in commercially available high-end
routers.

119

Figure 4.7: BGP session grafting time vs. RIB size.

is not changed). The \between blades" curve, then, illustrates the time required to

transfer the BGP routes and import them into the internal data structures. Note

that these results do not imply that TCP needs to be able to handle this long of

an outage where packets go unacknowledged { the TCP migration process takes less

than a millisecond. Instead, when compared to rehoming a customertoday, where

there is downtime measured in minutes, the migration time is small. In fact, since

in our setup AS100 and AS200 have a peering agreement, the actual migration time

would be less if AS100 were a customer of AS200 (since AS100 would announce fewer

routes to AS200).

The CPU utilization during the grafting process is also important. TheBGP

process on the migrate-from router experienced only a negligible increase in CPU

utilization for dumping the BGP RIBs. The migrate-to router needs to import the

routing entries and compare routing tables. For each pre�x in the received routing

information, the migrate-to router must perform a lookup to �nd the routing table

entry for that pre�x. Figure 4.8 shows the CPU utilization at 0.2 second intervals,

as reported bytop, for the case where the RIB consists of 200,000 pre�xes. There

are three things to note. First, the CPU utilization is roughly constant. This is

perhaps due to the implementation where the data is received, placed in a �le, then

120

Figure 4.8: The CPU utilization at the migrate-to router during migration, with a
200k pre�x RIB.

iteratively read from the �le and processed before reading the next. This keeps the

CPU utilization at only a fraction as computation is mixed with reads from disk.

Second, the CPU utilization is the same for both migrating between routers and

migrating between blades. The case between routers merely takeslonger because of

the additional work involved in running the BGP decision process. Third, migration

can be run as a lower priority task and use less CPU but take longer { preventing

the migration from e�ecting the performance of the router duringspikes in routing

updates, which commonly results in intense CPU usage during the spikes.

4.7.2 Optimizations for Reducing Impact

While the impact on the migrate-from and migrate-to routers is important, perhaps

a more important metric is the impact on the routersnot involved in the migration,

including other routers within the same AS as well as the eBGP neighbors. If the

overhead of grafting is relatively contained, network operators could more freely apply

the technique to simplify network-management tasks.

First and foremost, the remote end-point experiences an overhead directly pro-

portional to the number of additional BGP update messages it receives. The number

of messages depends on how many best routes di�er between the migrate-from and

121

(a) Without optimization. (b) Reducing eBGP impact. (c) Reducing iBGP impact.

Figure 4.9: Updates sent as a result of migration.

migrate-to router|the migrate-from router must send an updat e message for every

route that di�ers. The exact amount depends heavily on the proximity of the migrate-

from and migrate-to routers|if the two routers are in the same Point-of-Presence of

the ISP, perhaps no routes would change. As such, we do not expect this overhead to

be signi�cant. Since the sources of overhead for the remote end-point are relatively

well understood, and it is di�cult to acquire the kinds of intra-ISP measurement data

necessary to quantify the number of route changes, we do not present a plot for this

case.

Perhaps the more signi�cant impact is on the other routers, both within the AS

and in other ASes, that may have to learn new routes for the pre�xes announced by

the remote end-point. To evaluate this, we measured the number of updates that

would be sent as a function of the fraction of pre�xes where the migrate-from router

had selected a di�erent route than the migrate-to router. By doing so, this covers the

entire range of migration targets (i.e. it does not limit our evaluation to migration

within a PoP). Recall that this di�erence is what needs to be corrected. Also recall

that the pre�xes being considered here are the ones learned fromthe router at the

remote end-point of the session being migrated, not the entire routing table, as these

are the routes that could impact what is sent to other routers. For our measurement,

we use a �xed set of 100,000 pre�xes. However, the results are directly proportional

to the number of pre�xes, and can therefore be scaled appropriately { for migrating

122

a customer link, the number of pre�xes would be signi�cantly smaller,for migrating

a peering link, the number of pre�xes could be higher.

The results are shown in Figure4.9, with the three graphs representing the three

di�erent cases as discussed in Section4.6: (a) direct approach with no optimizations,

(b) optimizations to reduce eBGP messages by capitalizing on redundant information

in the network, and (c) optimizations to reduce iBGP messages by treating the route

selection changing as the common case. For the graphs, each line represents a �xed

fraction of di�ering routes that change the selected route as a result of the grafting.

For example, consider where the migrate-from router selects a particular route di�er-

ent than the migrate-to router. In this case, after migration, the migrate-to router

selects the route the migrate-from selected (i.e., it changes its ownroute). Each line

represents the fraction of times this change occurs|for example, the line labeled 0.2

in Figure 4.9 is where 20% of the routes that di�er will change to the routes selected

by the migrate-from router.

There are several things of note from the graphs. First is that the direct (un-

optimized) approach must send signi�cantly more messages. In thecase where the

selected routes do not di�er much, which we consider will be a most likely scenario,

the optimized approaches hardly send any messages at all. Second,when comparing

Figure 4.9(b) with Figure 4.9(c), we can see that depending on what would be con-

sidered the common case, we can choose a method that would resultin the fewest

updates. For (b), the assumption is that when the routes di�er, the migrate-to router

will not change to the routes the migrate-from selected. Whereasin (c), the assump-

tion is that when the routes di�er, the migrate-from router will change to the routes

the migrate-from router selected. The reason they would changeis that the routes

learned from the remote end-point of the session being migrated willnow be directly

learned routes, rather than via iBGP. It is likely that the policy of route selection is

consistent throughout the ISPs network, and therefore di�erences will be due to IGP

123

distances and changing the router will change those routes to be more preferable. We

are working on characterizing when these di�erences would occur inorder to enable

us to predict the impact a given migration might have. Third, and perhaps most

important, migration can be performed with minimal disruption to other routers in

the likely scenario where there are few di�erences in routes selected.

4.8 Tra�c Engineering with Grafting

In addition to the performance of the router grafting mechanism itself, we are also

interested in applying router grafting to new application areas. Here, we evaluate

router grafting for tra�c engineering. To do so, we �rst give a brief overview of tra�c

engineering today. We follow this with a description of our model for migration-aware

tra�c engineering. Finally, we present an algorithm based on this model and evaluate

with tra�c data from Internet2.

4.8.1 Tra�c Engineering Today

In traditional tra�c engineering, the network is represented by agraph G = (V; E),

where the vertex setV represents routers or switches, and the edge setE represents

the links. Every edgee 2 E has capacityce > 0. We are also given atra�c matrix

D = f dij gi;j 2 V , where entry dij � 0 is the amount of tra�c that vertex i wishes to

send vertexj . The goal is to distribute ow across the paths fromi to j to minimizing

total link usage (TLU).

TLU minimization reects a common goal in ISP networks [49]. Each link e has

a \cost" that reects its level of congestion, where lightly-loadedlinks are \cheap"

and links become exponentially more \expensive" as the link becomes heavily loaded.

The cost function � e speci�es the cost as a function off e (the total ow traversing

124

the edge) andce (the edge capacity). Every� e is a piecewise linear, strictly increasing

and convex function.

We use the cost function from [49], shown below:

� e(f e; ce) =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

f e 0 � f e
ce

< 1
3

3f e � 2
3ce

1
3 � f e

ce
< 2

3

10f e � 16
3 ce

2
3 � f e

ce
< 9

10

70f e � 178
3 ce

9
10 � f e

ce
< 1

500f e � 1468
3 ce 1 � f e

ce
< 11

10

5000f e � 16318
3 ce

11
10 � f e

ce
< 1

The goal is to distribute the entire demand between every pair of vertices in

a manner that minimizes the sum of all link costs (i.e., �e2 E � (f e; ce)). (Observe

that the ow along an edge can exceed the edge's capacity.) TLU minimization can

be formulated asminimum-cost multicommodity ow and is thus computable using

existing algorithms for computing multicommodity ows. Realizing this objective in

practice can be done via MPLS and a management system that solvesthe optimization

problem and installs the resulting paths. Network operators oftentake the indirect

approach of tuning Interior Gateway Protocol (IGP) weights to closely approximate

the optimal distribution of the tra�c [49].

4.8.2 Migration-Aware Tra�c Engineering

We now extend the tra�c-engineering model in Section4.8.1to incorporate migration.

Table 4.1 summarizes the notation.

Distinguishing users from network nodes: In our model for tra�c engineering

with migration, the network (see Figure4.10) is represented by a graphG = (V; E),

where the vertex setV is the union of two disjoint subsets,U and N . U is the set

125

Figure 4.10: Network model for tra�c engineering with migration.

Notation Description
G Network graph G = (V; E)
V Network vertex, union ofU and N
E Network edge, union ofEU and EN

U Set of network users
N Set of network nodes
EU Subset of edges that connect useru 2 U to net-

work nodes inN , EU � U � N
EN Subset of edges that connect network noden 2 N

to network nodes inN , EN � N � N
ce capacity of edgee 2 E
Lu Potential links, Lu � EU

D Demand matrix, D = f dij gi;j 2 U

dij Amount of tra�c that user i wishes to send user
j

� e cost function used in TLU minimization, function
of f e=ce

f e Total ow traversing the edge e

Table 4.1: Summary of notation used in model of tra�c engineering with migration.

126

of network users, that is, originators and receivers of tra�c, and N is the the set of

network nodes, that is, the routers/switches in the network. The term \users"here

refers to users of the network and not to end-users. In an ISP network, the set of

usersU represents routers in neighboring networks (\adjacent routers") and the set

of network nodesN represents the routers in the ISP's internal network (\internal

routers").

User edges are potential links: To capture the ability to migrate, we introduce

the notion of potential links that represent the locations where the user canpossibly

connect to the network. The edge setE is the union of two disjoint subsets,EU and

EN , where EU � U � N is the subset of edges connecting users to network nodes,

and EN � N � N is the subset of edges connecting network nodes to other network

nodes. Each edgee 2 EN has capacityce � 0, which measures the amount of ow

that can traverse edgee. We impose no capacity constraints on the edges inEU (that

is, these edges have in�nite capacity). We call the set of all edgesLu � EU that

connect useru 2 U to network nodes inN \the set of u's potential links" (that is,

8u 2 U, Lu = f e = (u; v)j e 2 EUg).

In ISP networks, the set of potential linksLu for each adjacent router (user)u

represents the points at whichu can connect to the ISP network. This can, in practice,

depend on the underlying transport network that can, for example, limit a user to

connecting only to network nodes in nearby geographical regions.In addition, the

set of potential links can reect latency considerations,e.g., it is bene�cial to home

frequently-communicating users near each other.

Demand matrix is user-to-user: Our model distinguishes network users from

network nodes, and our demand matrix captures this distinction; we are now given

a demand matrix D = f dij gi;j 2 U , where each entrydij speci�es the amount of tra�c

user i wishes to senduser j .

127

Each user must use a single potential link: The high-level goal is, for every pair

of usersi and j such that dij > 0, to distribute ow from i to j between the routes

from i to j in G, subject to the constraint that every user can only connect to the

network via a single link. That is, for every user u 2 U, tra�c owing from that

user to the other users, and vice versa, can only traverse a singleedge inLu; tra�c

along all other edges inLu must be 0. When optimizing the ow of tra�c through

the network we can again consider the TLU minimization objective.

4.8.3 Practical Considerations

Naturally, our formal framework does not capture all the constraints that could arise

in practice. We now present several such constraints and discusshow these can

be incorporated into our model. We leave these as interesting directions for future

research.

Cost of migration. Our framework does not model the cost of migration (in terms

of processing, o�ine time, and more) yet this is expected to be a consideration in

practice (we present some indication of the impact of this cost, based on experiments

with Internet2 data, in Section 4.8.8). We can incorporate that cost into our model

as follows. The input will include, in addition to the other components,an edge

eu 2 Lu, for every useru 2 U, that represents the link that useru is currently using

to connect to the network, and also costs associated with changing each useru's

current connection edge to other edges inLu.

Router limitations. Other practical considerations are the physical limitations of

the individual vertices in the network, including the number of links that each vertex

can support, and also the capacity of the node (in terms of processing, memory, band-

width, etc.). This can be incorporated into our model through additional constraints

128

(e.g., limits on the number of incoming links per node, node-capacity functions de-

pendent on incoming tra�c amount, etc.).

Multi-homed users. We did not model the case that users are multi-homed, that is,

that users connect to the network at more than one location. Thisalters our constraint

that a single potential link must be chosen per user. To incorporatethis into our

model we can introduce a variable for each useru that speci�es how many links in

Lu that user is allowed to send/receive tra�c along. It also adds the complexity that

changing the ingress point may alter the egress point (i.e., \hot-potato routing" [97]),

thus changing the tra�c matrix beyond the change introduced with migration. The

design and evaluation of heuristics/algorithms for this more general environment is

left for future work.

4.8.4 The Max-Link Heuristic

Determining which edge links to migrate requires new algorithms that complement

traditional tra�c engineering algorithms. We present a simple heuristic, that we

term the \ max-link heuristic", which uses a multicommodity ow solution to guide

the choice of a potential link for each user (which determines which edge links need

to migrate).

The max-link heuristic �rst computes the multicommodity ow in the inp ut net-

work that contains all potential links. Then, the heuristic uses this \fully fractional"

ow (where users' tra�c can be split between all of their potential links) to choose a

single potential link for each user, thus constructing a feasible (\integral") solution.

To do this, the max-link heuristic discards, for every useru 2 U, all potential links in

Lu but the single potential link which carries the most tra�c in the multico mmodity

ow solution (breaking ties arbitrarily).

The max-link heuristic consists of these three steps:

129

� Step I: Compute multicommodity ow f in the input network G (that con-

tains all potential links for each user) for the given demand matrixD. That is,

compute the minimum-cost multicommodity ow for TLU minimization with -

out restricting users to sending and receiving tra�c along a single potential

link. The multicommodity ow solution f tells us how much tra�c every user

u sends and receives along each of the potential links inLu. We let t(lu) denote

the sum of tra�c that user u sends and receives along the potential linklu 2 Lu.

� Step II: Use the most utilized potential link. Choose, for every user

u 2 U, a potential link for which t(lu) is maximized. (Migrate users' currently

connected link to the chosen potential link if necessary.)

� Step III: Compute the multicommodity ow in the resulting ne twork ,

that is, in the network obtained through the removal fromG of all potential

links but those chosen above. The max-link heuristic outputs (1) the choice of a

single potential link for each user and (2) the optimal routing of tra�c subject

to these migration decisions.

4.8.5 Experimental Results on Internet2

We now present our experimental evaluation of the max-link heuristic. The goal of

this evaluation is to demonstrate the bene�ts of using migration in tra�c engineering,

even with a simple heuristic. We �rst show in Section4.8.6that our max-link heuristic

does indeed lead to an improvement in network performance. We then examine two

additional concerns relating to more practical questions { how often do links need to

be migrated (Section4.8.7) and how many links need to be migrated (Section4.8.8).

130

We based all of our experiments on data collected from Internet2 [60], which

consists ofN = 9 core routers andU = 205 external routers5. We collected one week

of data starting January 18, 2010. From each router, we downloaded the previously

collected NetFlow data which provides summaries of the sampled ows(at the rate

of 1/100 packets) in 5-minute intervals (1-week of tra�c is 2016 5-minute samples).

We also downloaded the routing information base (RIB) and the output for the `show

bgp neighbor' command, both of which are captured every two hours. Every NetFlow

entry contains the incoming interface, which we used to representan external source

user. We used the routing tables for each of the routers to determine the egress

router for each ow, along with the speci�c interface on the egress router that the

ow exits the network on, which we used to represent the external destination user.

This enabled us to generate an external-user-to-external-usertra�c matrix.

4.8.6 Migration Improves Network Utilization

The �rst metric of importance is simply the improvement that can be obtained when

utilizing link migration. Our results for a single 5-minute period appearsin Fig-

ure 4.14. This particular interval was chosen as it represents the averageperfor-

mance, which we discuss later in this subsection. The Figure shows results for the

original (optimally engineered) network (the \original topology" line), and for tra�c

engineering with migration with 2 links per user (the \optimized topology" line) 6.

Our choice of the set of potential links (theLu 's) in the experiments was based on

geographical distance, with the users' locations inferred from which router they are

connected to in the original topology { e.g., some users connected inChicago would
5Determined from examining BGP information as well as tra�c traces { in reality, we may have

been missed an externally connected router or we may have includeda router that is not externally
connected.

6We do not present results for more potential links per-user, as in our small topology almost
every two users end up connected to a common network node whenthere are many potential links,
and thus tra�c between these users does not traverse the network at all. To elaborate, consider
the extreme case in which all users have potential links to all routers. Here, a multicommodity ow
solution will give no guidance on which links to use since no tra�c will even traverse the network.

131

Figure 4.11: Evaluation of max-link for a single 5-minute period.

have New York as a second potential link (in addition to Chicago), others would have

Kansas as a second potential link.

In the max-link heuristic, in Step I we calculate the TLU minimizing multicom-

modity ow of a graph which includes the potential links. The input is a prediction

of what the expected demands will be so that a new topology can be optimized for it.

For this experiment, we utilized the actual demand matrix, in essence giving perfect

predictive power. We rely on an ISPs ability to predict tra�c based onpast history.

To obtain the graph in Figure 4.14, we varied the tra�c demand by scaling all

entries by a multiplicative factor, plotted on the x-axis, and optimized for the TLU

for each. TLU minimization captures the goal of avoiding congestion, and involves

an exponentially increasing cost for utilizing a link (see Section4.8.2). We used the

cost function from [49] as detailed in Section4.8.1.

Due to the exponentially increasing cost, the network operator willwish to be

at a point in the curve that comes before the exponential rise, that is, before the

\knee" in the curve. Observe that this \knee" shifted to the right by roughly 20%,

and so, with migration, the network can handle 20% more tra�c with the same level

of congestion.

132

As mentioned, the particular 5-minute interval was chosen as it represents the

average case performance. To expand on this, we present in Figure 4.12 and Figure

4.13the results for all 2016 5-minute intervals. In Figure4.12, we show a time-series

representation where each data point represents the improvement achieved with link

migration. We de�ne this improvement metric as the amount of tra�c the network

can carry in the optimized topology at the same level of congestion as the original

topology { where the TLU represents the level of congestion. So,from the original

topology, we found the minimal TLU with a demand multiple of 1 (e.g., theactual

amount of tra�c). We then determined which demand multiple in the optimized

topology (i.e., with migration) would result in the same TLU. In other words, in terms

of the graph in Figure 4.11, we found the y value for x=1 on the original topology

line, and used that y value to �nd the x value on the optimized topologyline. Plotted

in Figure 4.13 is a cumulative distribution function of the same information.

From this we can see on average, tra�c engineering with migration can increase

network utilization by about 18.8%. Intuitively this comes from two factors. The �rst

is that by optimizing the homing locating based on the demand matrix, users that

communicate will tend to get closer together. Without link migration,the homing

location must be determined up front and then cannot change. Withlink migration,

we can alter the topology to bring users that communicate a lot closer together.

The second factor is that by re-optimizing the topology, we can have a signi�cant

impact on congested links. By giving some tra�c the ability to avoid thecongested

link (through migration), we can reduce the congestion on that link. There are,

however, a small number of cases (2.6%) where migrating links actually decreased

performance. Being a simple heuristic, there are no worst case guarantees with our

max-link heuristic, and so it is expected that there can be conditionswhich result in

poor performance.

133

Figure 4.12: Evaluation of max-link over 7 days of tra�c { time-series.

Figure 4.13: Evaluation of max-link over 7 days of tra�c { cumulative distribution
function.

4.8.7 Frequent Migration is Not Necessary

In Section 4.8.6, we examined the bene�ts of utilizing link migration in tra�c engi-

neering. We looked at the bene�ts when we could migrate every interval and knew

the tra�c in the next interval. However, predicting this can be di�cu lt on that short

of a time scale. Here, we examine how frequent we really need to be migrating.

To determine how frequent migration should occur, we looked at di�erent periods

{ every 5 minutes, 30 minutes, 1 hour, 6 hours, 12 hours, 24 hours. We utilized a

prediction of the average demand matrix for the next interval (e.g., the next 6 hours)

when computing the multicommodity ow as per Step I in the max-link heuristic.

This was used to determine the optimized topology that would be usedfor the entire

134

interval min max mean #worse (frac.)
5 mins 0.783 1.55 1.188 54 (0.0267)
30 mins 0.757 1.55 1.166 146 (0.0724)
1 hour 0.777 1.55 1.163 152 (0.0753)
6 hours 0.801 1.55 1.149 182 (0.0902)
12 hours 0.856 1.55 1.141 191 (0.0947)
24 hours 0.806 1.55 1.083 465 (0.2306)

Table 4.2: Comparison of the improvement over the original topologyoptimized for
routing only when performing grafting at di�erent intervals (over 7 days tra�c).

interval. We determined the TLU for each 5-minutes of tra�c using this topology

and compared the results to the original topology.

Shown in Table4.2, are the results for the di�erent intervals { showing the data

point with the worst performance, the best performance (capped at 1.55 due to run

time of the experiment), the average performance, and the number (and fraction) of

data points which were worse. As could be expected, the longer theinterval, the

worse the results. However, even re-optimizing the topology every 6 or 12 hours

still has good performance. Not only does utilizing longer intervals cut down on any

overhead of the migration itself (including calculating what to migrate), but it also

has the advantage that as the intervals become longer, tra�c patterns smooth out

and become more predictable.

4.8.8 Only a Fraction of Links Need to be Migrated

Our formulation of tra�c engineering with migration does not currently incorporate

the cost of migration, yet this is expected to be a consideration in practice. To decide

which users to migrate, we can weigh the cost of migrating a user against the gain

from migrating that user; when the impact of migrating a user is low (e.g., when

that user generates and consumes negligible amounts of tra�c), migration might be

undesirable.

135

Figure 4.14: Fraction of tra�c each user node sends in an example 5-minute period.

To investigate this, we plotted in Figure 4.14 the amount of tra�c each user

sends or receives for an example 5-minute interval. On the x-axis is the index of the

user, sorted by the amount of tra�c they generate/consume. On the y-axis is the

cumulative fraction of the total tra�c. We placed markers on eachuser for which our

max-link heuristic determined should be migrated.

From this we can see that 85% of the tra�c comes from the �rst 42 users, of

which, max-link only determined 5 of them to be migrated. Hence, we can still

obtain a signi�cant improvement in network performance while migrating only a

small number of links.

To evaluate this e�ect across the entire data sample, we plot the cumulative dis-

tribution functions of the number of links that need to be migrated considering three

di�erent thresholds { 100% (i.e., migrate all links that max-link determined need to

be migrated), 95%, and 90%. As can be seen, by not worrying abouta small fraction

of tra�c (which only minimally a�ect the actual network utilization), w e can greatly

reduce the number of links that need to be migrated.

136

Figure 4.15: Cumulative distribution function of the number of links that need to be
migrated during each interval over 7 days of tra�c (2016 5-minuteintervals). Shown
are three lines corresponding to di�erent thresholds { only links in the top X% of
tra�c are migrated.

4.9 Related Work

High availability and ease of network management are goals of many systems, and

therefore router grafting has much in common with them. In particular, ones that

attempt to minimize disruptions during planned maintenance. One possibility is to

recon�gure the routing protocols such that tra�c will no longer be sent to the router

about to undergo maintenance [98, 52]. Alternatively, others have decoupled the

control plane and data plane such that the router can continue toforward packets

while the control plane goes o�-line (e.g., rebooted) [93, 32]. However, unlike router

grafting, these require modi�cations to the remote end-point router and they are only

useful for temporarily shutting down the session on a given physical router, rather

than enabling the session to come back up on a di�erent router as in router grafting.

In this regard, router grafting shares more in common with VROOM (as discussed

in Chapter 3), which makes use of virtual machine migration to ease network man-

agement. Maintenance could be performed without taking down therouter simply

137

by migrating the virtual router to another physical router. This requires the two

physical routers to be compatible (running the same virtualization technology), a

limitation router grafting does not have. In fact, router grafting does not rely on

virtual machine technology. Kozuch showed the ability to migrate without the use of

virtualization [73], but did so at the granularity of the entire operating system and all

running processes. With a coarse granularity, the physical router where the virtual

router is being migrated to must be able to handle the entire virtual router's load.

Router grafting is also similar to the RouterFarm work [14], which targeted re-

homing a customer. However, it required restarting the session and is more disruptive

than router grafting. Along similar lines, high-availability routers enable switching

over to a di�erent router or blade in a router [3]. This, however, is done either

through periodically check-pointing, which preserves the memory image, or running

two complete instances of the router software concurrently, which is an ine�cient use

of resources.

While we presented router grafting in the context of a BGP session,we envision

it being more general. Along these lines, partitioning the pre�x spaceacross multiple

routers or blades is a possibility.ViAggre [19] partitions the pre�x space across multi-

ple routers, however it is a static architecture not one which dynamically repartitions

the pre�x space as router grafting could.

Finally, we made use of TCP socket migration to handle change or disruption in

end-points. One alternative is to modify the TCP protocol to includethe ability to

change IP addresses [94]. Since the IP address of the end-points in router grafting

can remain the same, we do not need this capability, but could make use of it.

In terms of our application of router grafting to tra�c tra�c engin eer-

ing, there has been much work on schemes for tra�c engineering in ISP net-

works [101][63][43][18][109]. This work interprets tra�c engineering as the adaptation

138

of the routing of tra�c within the network so as to optimize performance. We, in

contrast, also explore how to adapt tra�c's ingress and egress points.

Changes to the tra�c matrix can also result from actions of the users themselves

(e.g., using overlay routing to route around congested areas, as in Detour [92] and

RON [17]). However, such \sel�sh" overlay routing can, as pointed out in [82], signif-

icantly reduce the e�ectiveness of tra�c engineering (as it lies outside the control of

the ISP network operator). Interestingly, as these overlays shift the tra�c, migration

could be used to better handle the tra�c within the ISPs network.

Migration in the ISP context has received but little attention. Mechanisms for

the re-home of customers have been introduced [14], but the implications for tra�c

engineering has not been studied.

4.10 Summary

Router grafting is a new technique that opens many new possibilities for managing

a network. It does this by enabling, without disruption, the migration of a routing

session between (i) physical routers, (ii) blades in a cluster router, and (iii) routers

from di�erent vendors. We were able to do this while being transparent to the remote

end-point. We handled the changes in topology through incremental updates, only

sending out the necessary updates to convey the di�erence. Importantly, we did

not a�ect the correctness of the network as the data plane will continue to forward

packets and routing updates do not cause the migration to be aborted. Through the

development of new algorithms and evaluation with real tra�c, we demonstrated the

applicability of router grafting to tra�c engineering. Not only can ro uter grafting

simplify existing network management tasks, but it can also enable new applications.

139

Chapter 5

Conclusion

The Internet is becoming a more integral part of people's daily life { a trend that

will undoubtedly continue into the future. In order to run the underlying infrastruc-

ture, network operators continuously need to make changes to the network { e.g.,

add routers, change policies, and manage available resources suchas bandwidth. Un-

fortunately, these changes causes disruption. In this dissertation we take a novel

approach to addressing this disruption by refactoring the routersoftware to better

accommodate change. In this chapter we present a summary of the contributions in

Section5.1. We then present a uni�ed architecture which combines the three systems

presented in this dissertation in Section5.2. We discuss some directions for future

work in Section5.3 and wrap up with some concluding remarks in Section5.4.

5.1 Summary of Contributions

This dissertation proposes a refactoring of router software in order to provide a more

reliable network.

First, we tailored software and data diversity (SDD) to the unique properties of

routing protocols, so as to avoid buggy behavior at run time. Our bug-tolerant router

executes multiple diverse instances of routing software, and usesvoting to determine

140

the output to publish to the forwarding table, or to advertise to neighbors. We

designed and implemented a router hypervisor that makes this parallelism transparent

to other routers, handles fault detection and booting of new router instances, and

performs voting in the presence of routing-protocol dynamics, without needing to

modify software of the diverse instances. Experiments with BGP message traces and

open-source software running on our Linux-based router hypervisor demonstrated

that our solution scales to large networks and e�ciently masks buggy behavior.

Second, we argued that breaking the tight coupling between the physical and

logical con�gurations of a network can provide asingle, general abstraction that

simpli�es network management. Speci�cally, we proposed VROOM (Virtual ROuters

On the Move), a new network-management primitive where virtual routers can move

freely from one physical router to another. We presented the design, implementation,

and evaluation of novel migration techniques for virtual routers with either hardware

or software data planes. Our evaluation showed that VROOM is transparent to

routing protocols and results in no performance impact on the datatra�c when a

hardware-based data plane is used.

Finally, we introduced the concept of router grafting, and realize an instance of

it through BGP session migration. This capability allows an operator torehome a

customer with no disruption, compared to downtimes today measured in minutes.

We demonstrated that BGP session migration can be performed in today's mono-

lithic routing software, without much modi�cation or refactoring of the code. We

also demonstrated that with our architecture, BGP session migration can be per-

formed (i) transparently, where the remote BGP session end-point is not modi�ed

and is unaware migration is happening, (ii) with minimal impact on other routers

not directly involved in the migration, and (iii) such that unplanned routing changes

(such as link failures) during the grafting process do not a�ect correctness, and where

packets are delivered successfully even during the migration. We additionally applied

141

router grafting to tra�c engineering where not only can network operators control

how tra�c ows through the network, but now can also control where tra�c enters

and exits the network. We developed a new algorithm to determine what links to mi-

grate and through an evaluation using real tra�c traces from Internet2 showed that

signi�cant improvements in the utilization of the network can be achieved through

router grafting.

A commonality among each of our solutions is that rather than solvinga problem

on top of the existing system, we changed the system to make the problem go away

fundamentally. With the bug-tolerant router, rather than test, debug, and analyze

router software to reduce bugs, we changed the platform to tolerate the bugs. With

VROOM, rather than extend protocols and management practice to minimize disrup-

tion, we utilized virtualization in the routers to decouple the logical IP-layer topology

from the physical topology. With router grafting, rather than extend protocols, or be

forced to settle for coarse-grain migration, we made individual routing sessions mi-

gratable. With our application of router grafting to tra�c engineer ing, rather than

focusing on optimization of routing on a �xed tra�c matrix, we utilized a mechanism

which enables us to change the tra�c matrix.

Collectively, by taking a unique approach, the contributions of this dissertation

enable network operators to perform the desired change on theirnetwork without (i)

possibly triggering bugs in routers that causes Internet-wide instability, (ii) causing

unnecessary network re-convergence events, (iii) having to coordinate with neigh-

boring network operators, or (iv) needing an Internet-wide upgrade to new routing

protocols.

142

5.2 A Uni�ed Architecture

Individually, the bug-tolerant router, VROOM, and router grafting each provide an

improved router architecture which better accommodates changes in networks. Ide-

ally, however, we want all of these to be realized in a single router. While we proto-

typed each system independently, there is a clear path to a single uni�ed architecture.

As illustrated in Figure 5.1, at a high level each of the bug-tolerant router instances

can support router grafting, and each VROOM virtual router canbe a bug-tolerant

router.

Figure 5.1: Uni�ed architecture.

However, it is not a completely clean separation as there are subtle interactions

that need to be addressed. To understand this, we'll �rst recapitulate the main

modi�cations to router software needed for each:

� VROOM : The VROOM hypervisor is based o� of virtual machine technology

to enable migration of the control plane state and processes. TheVROOM hy-

pervisor supports the data plane migration process through dataplane cloning.

Data plane cloning involves the VROOM hypervisor (i) making a requestto the

control plane to repopulate the forwarding table and (ii) sending any forward-

143

ing table updates to both the local forwarding table and the remoteforwarding

table.

� BTR : The BTR hypervisor allows multiple processes to run simultaneously

and virtualizes their interface at the socket level, but does not provide complete

platform virtualization. The BTR hypervisor (i) intercepts input messages and

multicasts them to each instance, (ii) intercepts output messagesand performs

voting on them before sending out the update, and (iii) manages router instances

with the ability to bootstrap new instances and kill buggy instances.

� Router grafting : Router grafting requires modi�cations to the router soft-

ware to enable the importing and exporting of state, and re-running decision

processes based on the new state. Router grafting also requiresoperating sys-

tem functionality in order to support the importing and exporting of the state

for individual TCP sessions.

From this, we can see that each of the possible interactions requires some modi�-

cation in order to provide a complete, uni�ed system:

� VROOM $ BTR : VROOM needs to be able to make a request to the virtual

router to repopulate the forwarding table. This is an interface we had to add

to the routing software and therefore the BTR hypervisor needsto present

this interface. The routing software will still need this interface, and will use

the modi�cations we made originally to enable VROOM. The BTR hypervisor

could then simply forward the request from the VROOM hypervisor to each of

the router instances. They would each repopulate the forwardingtable, which

would trigger the BTR hypervisor to vote on each entry before writing the result

to the forwarding table.

� VROOM $ Router grafting : Router grafting needs modi�cations to the

operating system to be able to import/export all of the TCP sessionstate that

144

is associated with a given socket. The operating system that is providing the

socket interface to the routing software processes will need to have this capa-

bility. In a container based virtualization solution (e.g., OpenVZ), as we used

in our VROOM prototype, the virtual router does not have its own operating

system { it shares one with all of the other virtual routers. In a platform vir-

tualization solution (e.g., Xen, KVM, VMWare), the virtual routers will each

have their own operating system.

� BTR $ Router grafting : With router grafting, the router software also had

modi�cations to be able to import and export a socket. In the bug-tolerant

router, the routing software actually has sockets that provide acommunication

channel to the BTR hypervisor and the BTR hypervisor has the sockets that

provide a communication channel to neighboring routers. The routing software

would not need to change as the communication channel to the BTR hypervisor

was hidden from the routing software. The BTR hypervisor would need the

ability to import and export a socket, and in turn, trigger an import or export

in each of the instances. In addition to importing and exporting a socket, with

router grafting the routing session state is also imported and exported along

with re-running decision processes based on the updated state. With the bug-

tolerant router, there are multiple instances. Therefore, the BTR hypervisor

would need to export the state from each instance at the migrate-from router,

vote on that state, and then at the migrate-to router import that state in each

of the instances. The process will still be transparent to neighboring routers,

but as is the case with a bug-tolerant router, with multiple instancesthere will

be more processing to perform a session migration.

145

5.3 Future Work

In addition to building the uni�ed architecture, each individual system has directions

for future research. Here, we examine a few of these.

5.3.1 Monitoring in Addition to Voting for a Bug-Tolerant

Router

With the bug-tolerant router we perform voting among multiple instances of routing

software performing the same functionality to detect and correct any bugs. A buggy

instance of the software can be rebooted or replaced. A complementary approach

would be to utilize techniques which perform anomaly detection on therun-time

characteristics of the software itself [96] { e.g., memory utilization, CPU utilization,

latency. By detecting something is going wrong (e.g., CPU utilization is spiking

without a ood of updates to process) we may be able to catch buggy instances

before they become faulty. This proactive correction of instances will lead to a more

reliable system.

5.3.2 Hosted and Shared Network Infrastructure with

VROOM

In the world of computing, a shift has begun towards the use of infrastructures which

are hosted and shared (i.e., cloud computing). This has increased the level of innova-

tion by enabling companies to come out with new web services for less cost, created

new business models where a party can lease out slices of servers ondemand with a

pay-per-use model, and even simpli�ed management in private (non-hosted) networks

by enabling a company to more easily run independent services on its own servers.

We believe that the same will be true of networking where many applications would

146

greatly bene�t from in-network functionality beyond the basic connectivity o�ering

of today.

A key challenge that these infrastructures present is that they decouple the owner

of the infrastructure from the service provider that is running the routing protocols

and applications. Not only would planned maintenance be disruptive, as in networks

today, but techniques which lessen the impact (e.g., diverting tra�caway) are no

longer possible since these are two di�erent parties. VROOM provides a solution

here as it decouples physical from logical, so physical maintenance can be done with-

out impacting logical. Isolation is also important, which has been examined in the

computing context [66], as well as the virtual router context [22]. We view a router

as more than just routing protocols, so both will be relevant.

5.3.3 Router Grafting for Security

Router grafting is a mechanism to seamlessly move links and the associated BGP

session. This not only aids in today's network management, it enablesnew applica-

tions. We applied router grafting to tra�c engineering, but there may be other novel

uses of the technology that are worth exploring. One promising application area is

to use router grafting as part of a \moving-target" defense mechanism [53]. Static

systems allow attackers to observe the operation of the system over long periods of

time and plan attacks with con�dence. With a moving-target defense, the system is

continuously changed so that the planned attack will no longer work. By utilizing

router grafting, we can continuously change the topology and change which router

(di�erent vendors, di�erent models) a particular neighboring network is connected to.

147

5.4 Concluding Remarks

The Internet is becoming critical infrastructure. As such, we need a network infras-

tructure that we can depend on. We took an approach which does not require an

Internet-wide upgrade, yet improved the reliability of the network. By rethinking the

design of routers, we enable network operators to manage their networks without trig-

gering much of the disruption that is seen today when performing this management.

We utilized software and data diversity to build a router which operates correctly

even in the inevitable presence of bugs. We introduced novel migration mechanism,

both at the granularity of a virtual router and at the level of an individual link and

associated routing session. Not only does this migration simplify today's management

tasks, it also enables new applications as well.

Perhaps most importantly, we have shown that signi�cant improvements can be

made without having to wipe the slate clean in the Internet. We do thisby capital-

izing on recent trends in networks and routers to rethink the router design to better

accommodate the changes network operators routinely need to make. We believe

that our work is an important step towards a more reliable Internetand provide a

novel approach to challenges faced in network management. Finally, this work raises

interesting questions about what exactly a router is, and the various ways routers can

be \sliced and diced." We plan to explore these questions in our ongoingwork.

148

Bibliography

[1] BIRD Internet routing daemon. http://bird.network.cz/ .

[2] Cisco 7200 simulator. (software to run Cisco IOS images on desktop PCs) www.
ipflow.utc.fr/index.php/Cisco_7200_Simulator .

[3] Cisco IOS high availability curbs downtime with faster reloads and
upgrades. http://www.cisco.com/en/US/products/ps6550/prod_whi te_
papers_list.html .

[4] Olive. (software to run Juniper OS images on desktop PCs)juniper.cluepon.
net/index.php/Olive .

[5] OpenVZ. http://www.openvz.org .

[6] Quagga software routing suite.http://www.quagga.net .

[7] Route views project.www.routeviews.org .

[8] Vyatta (open-source router vendor).www.vyatta.com.

[9] XORP: Open Source IP Router.http://www.xorp.org .

[10] IETF draft: MRT routing information export format, July 2009. http://
tools.ietf.org/id/draft-ietf-grow-mrt-10.txt .

[11] The Internet2 Network. http://www.internet2.edu/ .

[12] T. A�erton, R. Doverspike, C. Kalmanek, and K. K. Ramakrishnan. Packet-
aware transport for metro networks. IEEE Communication Magazine, March
2004.

[13] S. Agarwal, C. Chuah, S. Bhattacharyya, and C. Diot. Impactof BGP dynamics
on router CPU utilization. In Passive and Active Measurement, April 2004.

[14] Mukesh Agrawal, Susan Bailey, Albert Greenberg, Jorge Pastor, Panagiotis
Sebos, Srinivasan Seshan, Jacobus van der Merwe, and Jennifer Yates. Router-
Farm: Towards a dynamic, manageable network edge. InACM SIGCOMM
Workshop on Internet Network Management (INM), September 2006.

149

[15] C. Alaettinoglu, V. Jacobson, and H. Yu. Towards millisecond IGPconvergence.
In IETF Draft , November 2000.

[16] R. Alimi, Y. Wang, and Y. R. Yang. Shadow con�guration as a network man-
agement primitive. In SIGCOMM, August 2008.

[17] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris.
Resilient overlay networks. InProc. ACM SOSP, October 2001.

[18] D. Applegate, L. Breslau, and E. Cohen. Coping with network failures: Routing
strategies for optimal demand oblivious restoration. InProc. ACM SIGCMET-
RICS, June 2004.

[19] Hitesh Ballani, Paul Francis, Tuan Cao, and Jia Wang. Making Routers Last
Longer with ViAggre. In Proc. of USENIX Symposium on Networked Systems
Design and Implementation, April 2009.

[20] E. Berger and B. Zorn. DieHard: Probabilistic memory safety for unsafe lan-
guages. InProgramming Languages Design and Implementation, June 2006.

[21] Massimo Bernaschi, Francesco Casadei, and Paolo Tassotti. SockMi: a solution
for migrating TCP/IP connections. In Proc. Euromicro International Confer-
ence on Parallel, Distributed and Network-Based Processing, 2007.

[22] Sapan Bhatia, Murtaza Motiwala, Wolfgang Muhlbauer, Yogesh Mundada, Vy-
tautas Valancius, Andy Bavier, Nick Feamster, Larry Peterson, and Jennifer
Rexford. Trellis: A platform for building exible, fast virtual networ ks on com-
modity hardware. In Proc. Workshop on Real Overlays and Distributed Systems
(ROADS), December 2008.

[23] Olivier Bonaventure, Clarence Fils�ls, and Pierre Francois. Achieving sub-
50 milliseconds recovery upon BGP peering link failures.IEEE/ACM Trans.
Networking, October 2007.

[24] Robert Braden. Requirements for Internet Hosts - Communication Layers. RFC
1122, October 1989.

[25] B. Brenner. Cisco IOS aw prompts symantec to raise threat level. In Infor-
mation Security Magazine, Sept. 2005.

[26] S. Bryant and P. Pate. Pseudo wire emulation edge-to-edge (PWE3) architec-
ture. RFC 3985, March 2005.

[27] J. Caballero, T. Kampouris, D. Song, and J. Wang. Would diversity really
increase the robustness of the routing infrastructure against software defects?
In NDSS, Feb. 2008.

[28] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and K. van der
Merwe. Design and implementation of a routing control platform. InNSDI,
April 2005.

150

[29] M. Caesar and J. Rexford. Building bug-tolerant routers with virtualization.
In PRESTO, August 2008.

[30] M. Castro and B. Liskov. Practical byzantine fault tolerance.In OSDI, February
1999.

[31] Joe Chabarek, Joel Sommers, Paul Barford, Cristian Estan,David Tsiang,
and Steve Wright. Power awareness in network design and routing.In IEEE
INFOCOM, 2008.

[32] E. Chen, R. Fernando, J. Scudder, and Y. Rekhter. Graceful Restart Mechanism
for BGP. RFC 4724, January 2007.

[33] B-G. Chun, P. Maniatis, and S. Shenker. Diverse replication forsingle-machine
byzantine-fault tolerance. InUSENIX Annual Technical Conference, June 2008.

[34] Ciena CoreDirector Switch.http://www.ciena.com .

[35] Cisco ASR 1000 series aggregation services router high availability: Deliv-
ering carrier-class services to midrange router.http://www.cisco.com/en/
US/prod/collateral/routers/ps9343/solution_overview _c22-450809_
ps9343_Product_Solution_Overview.html .

[36] MPLS VPN Carrier Supporting Carrier.http://www.cisco.com/en/US/docs/
ios/12_0st/12_0st14/feature/guide/csc.html .

[37] Cisco Logical Routers. http://www.cisco.com/en/US/docs/ios_xr_sw/
iosxr_r3.2/interfaces/command/reference/hr32lr.html .

[38] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew War�eld. Live Migration of Virtual
Machines. InNSDI, May 2005.

[39] B. Cox, D. Evans, A. Filip, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser. N-variant systems: A secretlessframework for
security through diversity. In Usenix Security, August 2006.

[40] Brendan Cully, Geo�rey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchin-
son, and Andrew War�eld. Remus: High availability via asynchronous virtual
machine replication. InNSDI, April 2008.

[41] D-ITG. http://www.grid.unina.it/software/ITG/ .

[42] J. Du�y. BGP bug bites Juniper software. InNetwork World, December 2007.

[43] A. Elwalid, C. Jin, S. Low, and I. Widjaja. MATE: MPLS adaptive tra�c
engineering. InProc. IEEE INFOCOM , 2001.

[44] Emulab. http://www.emulab.net .

151

[45] J. Evers. Trio of Cisco aws may threaten networks. InCNET News, January
2007.

[46] N. Feamster and H. Balakrishnan. Detecting BGP con�gurationfaults with
static analysis. InNSDI, May 2005.

[47] N. Feamster and J. Rexford. Network-wide prediction of BGP routes. In
IEEE/ACM Trans. Networking , April 2007.

[48] Nick Feamster, Lixin Gao, and Jennifer Rexford. How to lease the Internet
in your spare time. ACM SIGCOMM Computer Communications Review, Jan
2007.

[49] Bernard Fortz and Mikkel Thorup. Internet tra�c engineering by optimizing
OSPF weights. InProc. IEEE INFOCOM , 2000.

[50] Pierre Francois and Olivier Bonaventure. Avoiding transient loops during the
convergence of link-state routing protocols.IEEE/ACM Transactions on Net-
working, 15(6):1280{1932, December 2007.

[51] Pierre Francois, Pierre-Alain Coste, Bruno Decraene, and Olivier Bonaventure.
Avoiding disruptions during maintenance operations on BGP sessions. IEEE
Transactions on Network and Service Management, 4(3):1{11, 2007.

[52] Pierre Francois, Mike Shand, and Olivier Bonaventure. Disruption-free topology
recon�guration in OSPF networks. In IEEE INFOCOM , May 2007.

[53] Anup K. Ghosh, Dimitrios Pendarakis, and William H. Sanders. National cyber
leap year summit 2009 co-chairs report: Moving target defense.http://www.
qinetiq-na.com/Collateral/Documents/English-US/InTh eNews_docs/
National_Cyber_Leap_Year_Summit_2009_Co-Chairs_Report.pdf .

[54] Joel Gottlieb, Albert Greenberg, Jennifer Rexford, and Jia Wang. Automated
provisioning of BGP customers.IEEE Network Magazine, November/December
2003.

[55] Timothy G. Gri�n and Jo•ao Lu��s Sobrinho. Metarouting. In SIGCOMM,
August 2005.

[56] D. Gupta, S. Lee, M. Vrable, S. Savage, A. Snoeren, A. Vahdat, G. Varghese,
and G. Voelker. Di�erence engine: Harnessing memory redundancyin virtual
machines. InOSDI, December 2008.

[57] Maruti Gupta and Suresh Singh. Greening of the Internet. InSIGCOMM,
August 2003.

[58] R. Hinden. Virtual router redundancy protocol (VRRP). RFC 3768, April
2004.

152

[59] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot.Feasibility of IP
restoration in a tier-1 backbone.IEEE Network Magazine, Mar 2004.

[60] Internet2. http://www.internet2.org .

[61] Juniper Logical Routers. http://www.juniper.net/techpubs/software/
junos/junos85/feature-guide-85/id-11139212.html .

[62] F. Junqueira, R. Bhgwan, A. Hevia, K. Marzullo, and G. Voelker.Surviving
Internet catastrophes. InHotOS, May 2003.

[63] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope: Re-
sponsive yet stable tra�c engineering. InProc. SIGCOMM, 2005.

[64] Ethan Katz-Bassett, Harsha V. Madhyastha, John P. John,Arvind Krishna-
murthy, David Wetherall, and Thomas Anderson. Studying black holes in the
internet with hubble. In Proceedings of the 5th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI'08, 2008.

[65] Eric Keller, Jennifer Rexford, and Jacobus van der Merwe. Seamless BGP
session migration with router grafting. InProc. Networked Systems Design and
Implementation, 2010.

[66] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee.NoHype: Virtual-
ized cloud infrastructure without the virtualization. In International Symposium
on Computer Architecture, June 2010.

[67] Eric Keller, Minlan Yu, Matthew Caesar, , and Jennifer Rexford.Virtually
eliminating router bugs. In CoNEXT, Dec 2009.

[68] Z. Kerravala. Con�guration Management Delivers Business Resiliency. The
Yankee Group, November 2002.

[69] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: Formal
veri�cation of an os kernel. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP), 2009.

[70] J. Knight and N. Leveson. A reply to the criticisms of the Knight &Leveson
experiment. ACM SIGSOFT Software Engineering Notes, January 1990.

[71] W. Knight. Router bug threatens 'Internet backbone'. InNew Scientist Maga-
zine, July 2003.

[72] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek. The Click
modular router. In ACM Trans. Comp. Sys., August 2000.

153

[73] Michael A. Kozuch, Michael Kaminsky, and Michael P. Ryan. Migration with-
out virtualization. In Proc. Workshop on Hot Topics in Operating Systems,
May 2009.

[74] A. Kuatse, R. Teixeira, and M. Meulle. Characterizing network events and their
impact on routing. In CoNEXT (Student Poster), December 2007.

[75] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker, and
I. Stoica. Achieving convergence-free routing using failure-carrying packets. In
SIGCOMM, August 2007.

[76] A. Markopoulou, G. Iannaconne, S. Bhattacharrya, C-N. Chuah, and C. Diot.
Characterization of failures in an IP backbone. InIEEE/ACM Trans. Network-
ing, Oct. 2008.

[77] Marvin McNett, Diwaker Gupta, Amin Vahdat, and Geo�rey M. Voelker.
Usher: An extensible framework for managing clusters of virtual machines. In
USENIX Large Installation System Administration Conference (LISA), Novem-
ber 2007.

[78] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Path splicing. In
SIGCOMM, 2008.

[79] NetFPGA. http://yuba.stanford.edu/NetFPGA/ .

[80] A. O'Donnell and H. Sethu. On achieving software diversity for improved net-
work security using distributed coloring algorithms. InACM CCS, October
2004.

[81] Average retail price of electricity. http://www.eia.doe.gov/cneaf/
electricity/epm/table5_6_a.html .

[82] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. Sel�sh routing in Internet-like
environments. InProc. SIGCOMM, 2003.

[83] R. Rajendran, V. Misra, and D. Rubenstein. Theoretical bounds on control-
plane self-monitoring in routing protocols. InSIGMETRICS, June 2007.

[84] M. Reardon. Cisco o�ers justi�cation for Procket deal. June 2004. http://
news.cnet.com/Cisco-offers-justification-for-Procke t-deal/
2100-1033_3-5237818.html.

[85] Y. Rekhter and T. Li. A border gateway protocol 4 (bgp-4). RFC 1771, March
1995.

[86] Renesys. AfNOG takes byte out of Internet.http://www.renesys.com/blog/
2009/05/byte-me.shtml .

[87] Renesys. House of cards. http://www.renesys.com/blog/2010/08/
house-of-cards.shtml .

154

[88] Renesys. How to build a cybernuke.http://www.renesys.com/blog/2010/
04/how-to-build-a-cybernuke.shtml .

[89] Renesys. Longer is not always better.http://www.renesys.com/blog/2009/
02/longer-is-not-better.shtml .

[90] A. Rostami and E.H. Sargent. An optical integrated system for implementa-
tion of NxM optical cross-connect, beam splitter, mux/demux andcombiner.
IJCSNS International Journal of Computer Science and NetworkSecurity, July
2006.

[91] Kurt Roth, Fred Goldstein, and Jonathan Kleinman. Energy Consumption by
O�ce and Telecommunications Equipment in commercial buildings VolumeI:
Energy Consumption Baseline. National Technical Information Service (NTIS),
U.S. Department of Commerce, Spring�eld, VA 22161, NTIS Number: PB2002-
101438, 2002.

[92] Stefan Savage, Tom Anderson, Amit Aggarwal, David Becker, Neal Cardwell,
Andy Collins, Eric Ho�man, John Snell, Amin Vahdat, Geo� Voelker, and John
Zahorjan. Detour: A case for informed Internet routing and transport. IEEE
Micro, January 1999.

[93] Aman Shaikh, Rohit Dube, and Anujan Varma. Avoiding instability during
graceful shutdown of multiple OSPF routers.IEEE/ACM Trans. Networking ,
14(3):532{542, June 2006.

[94] Alex Snoeren and Hari Balakrishnan. An end-to-end approachto host mobility.
In Proc. ACM MOBICOM , Boston, MA, August 2000.

[95] Mobeen Tahir, Mark Ghattas, Dawit Birhanu, and Syed Natif Nawaz. Cisco
IOS XR Fundamentals. Cisco Press, 2009.

[96] Yongmin Tan and Xiaohui Gu. On predictability of system anomaliesin real
world. In 18th Annual Meeting of the IEEE International Symposium on Mod-
eling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS 2010), 2010.

[97] R. Teixeira, T. Gri�n, A. Shaikh, and G. Voelker. Network sensitivity to hot-
potato disruptions. In Proc. SIGCOMM, 2003.

[98] Renata Teixeira, Aman Shaikh, Tim Gri�n, and Jennifer Rexford. Dynamics
of hot-potato routing in IP networks. In SIGMETRICS, June 2004.

[99] J.E. van der Merwe and I.M. Leslie. Switchlets and dynamic virtualATM
networks. In Proc. IFIP/IEEE International Symposium on Integrated Network
Management, May 1997.

[100] VINI. http://www.vini-veritas.net/ .

155

[101] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang, and Al-
bert Greenberg. COPE: Tra�c engineering in dynamic networks. InProc.
SIGCOMM, 2006.

[102] L. Wang, D. Massey, K. Patel, and L. Zhang. FRTR: A scalable mechanism to
restore routing table consistency. InDSN, June 2004.

[103] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford. Vir-
tual Routers on the Move: Live Router Migration as a Network-Management
Primitive. In SIGCOMM, August 2008.

[104] John Wei, K.K. Ramakrishnan, Robert Doverspike, and Jorge Pastor. Con-
vergence through packet-aware transport.Journal of Optical Networking, 5(4),
April 2006.

[105] B. White, J. Lepreau, L. Stoller, R. Ricci, G. Guruprasad, M. Newbold, M. Hi-
bler, C. Barb, and A. Joglekar. An integrated experimental environment for
distributed systems and networks. InOSDI, December 2002.

[106] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif.
Black-box and Gray-box Strategies for Virtual Machine Migration. In NSDI,
April 2007.

[107] Z. Yin, M. Caesar, and Y. Zhou. Towards understanding bugsin router software.
In ACM SIGCOMM Computer Communication Review, June 2010.

[108] A. Yumerefendi, B. Mickle, and L. Cox. Tightlip: Keeping applications from
spilling the beans. InNSDI, April 2007.

[109] C. Zhang, Z. Ge, J. Kurose, Y. Liu, and D. Towsley. Optimal routing with
multiple tra�c matrices: Tradeo� between average case and worstcase perfor-
mance. InProc. International Conference on Network Protocols, Nov. 2005.

[110] Y. Zhang, S. Dao, H. Vin, L. Alvisi, and W. Lee. Heterogeneousnetworking: A
new survivability paradigm. In New Security Paradigms Workshop, September
2008.

[111] Y. Zhou, D. Marinov, W. Sanders, C. Zilles, M. d'Amorim, S. Lauterburg, and
R. Lefever. Delta execution for software reliability. InHot Topics in Depend-
ability, June 2007.

156

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Change Happens
	1.1.1 Equipment Failure
	1.1.2 Planned Maintenance of Equipment and Software
	1.1.3 Updated Inter-domain Policy and Connectivity
	1.1.4 Changes to Optimize Resource Utilization
	1.1.5 Service Deployment and Evolution

	1.2 Change is Painful
	1.2.1 Because Routing Software is Distributed
	1.2.2 Because Routing Software is Complex
	1.2.3 Because Routing Software is Configurable

	1.3 Refactoring Router Software
	1.4 Router Trends

	2 Hiding Routing Software Bugs from Adjacent Routers with the Bug-Tolerant Router
	2.1 Introduction
	2.1.1 Challenges in dealing with router bugs
	2.1.2 The case for diverse replication in routers
	2.1.3 Designing a Bug-Tolerant Router

	2.2 Software and Data Diversity in Routers
	2.2.1 Diversity in the software environment
	2.2.2 Execution environment diversity
	2.2.3 Protocol diversity

	2.3 Bug Tolerant Router (BTR)
	2.3.1 Making replication transparent
	2.3.2 Dealing with the transient and real-time nature of routers

	2.4 Router Hypervisor Prototype
	2.4.1 Wrapping the routing software
	2.4.2 Detecting and recovering from faults
	2.4.3 Reducing complexity

	2.5 Evaluation
	2.5.1 Voting in the presence of churn
	2.5.2 Processing overhead
	2.5.3 Effect on convergence

	2.6 Discussion
	2.7 Related Work
	2.8 Summary

	3 Decoupling the Logical IP-layer Topology from the Physical Topology with VROOM
	3.1 Introduction
	3.2 Background
	3.2.1 Flexible Link Migration
	3.2.2 Related Work

	3.3 Network Management Tasks
	3.3.1 Planned Maintenance
	3.3.2 Service Deployment and Evolution
	3.3.3 Power Savings

	3.4 VROOM Architecture
	3.4.1 Making Virtual Routers Migratable
	3.4.2 Virtual Router Migration Process

	3.5 Prototype Implementation
	3.5.1 Enabling Virtual Router Migration
	3.5.2 Realizing Virtual Router Migration

	3.6 Evaluation
	3.6.1 Methodology
	3.6.2 Performance of Migration Steps
	3.6.3 Data Plane Impact
	3.6.4 Control Plane Impact

	3.7 Migration Scheduling
	3.8 Summary

	4 Seamless Edge Link Migration with Router Grafting
	4.1 Introduction
	4.1.1 A Case for Router Grafting
	4.1.2 Challenges and Contributions

	4.2 BGP Routing Within a Single AS
	4.2.1 Protocol Layers: IP, TCP, & BGP
	4.2.2 Components: Blades, Routers, & ASes

	4.3 Router Grafting Architecture
	4.3.1 Copying BGP Session Configuration
	4.3.2 Exporting & Resetting Run-Time State
	4.3.3 Migrating TCP Connection & IP Link
	4.3.4 Importing BGP Routing State

	4.4 Correct Routing and Forwarding
	4.4.1 Control Plane: BGP Routing State
	4.4.2 Data Plane: Packet Forwarding

	4.5 BGP Grafting Prototype
	4.5.1 Configuring the Migrate-To Router
	4.5.2 Exporting Migrate-From BGP State
	4.5.3 Exporting Migrate-From TCP State
	4.5.4 Importing the TCP State
	4.5.5 Migrating the Layer-Three Link
	4.5.6 Importing Routing State

	4.6 Optimizations for Reducing Impact
	4.6.1 Reducing Impact on eBGP Sessions
	4.6.2 Reducing Impact on iBGP Sessions
	4.6.3 Eliminating Processing Entirely

	4.7 Performance Evaluation
	4.7.1 Grafting Delay and Overhead
	4.7.2 Optimizations for Reducing Impact

	4.8 Traffic Engineering with Grafting
	4.8.1 Traffic Engineering Today
	4.8.2 Migration-Aware Traffic Engineering
	4.8.3 Practical Considerations
	4.8.4 The Max-Link Heuristic
	4.8.5 Experimental Results on Internet2
	4.8.6 Migration Improves Network Utilization
	4.8.7 Frequent Migration is Not Necessary
	4.8.8 Only a Fraction of Links Need to be Migrated

	4.9 Related Work
	4.10 Summary

	5 Conclusion
	5.1 Summary of Contributions
	5.2 A Unified Architecture
	5.3 Future Work
	5.3.1 Monitoring in Addition to Voting for a Bug-Tolerant Router
	5.3.2 Hosted and Shared Network Infrastructure with VROOM
	5.3.3 Router Grafting for Security

	5.4 Concluding Remarks

