Refactoring Router Software to

Minimize Disruption

Eric Robert Keller

A Dissertation
Presented to the Faculty
of Princeton University
in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance
by the Department of
Electrical Engineering

Adviser: Jennifer Rexford

November 2011

¢ Copyright by Eric Robert Keller, 2011.

All rights reserved.

Abstract

Network operators are under tremendous pressure to make thaetworks highly
reliable to avoid service disruptions. Yet, operators often need tthange the network
to upgrade faulty equipment, deploy new services, and install newsuters. Unfortu-
nately, changes cause disruptions, forcing a trade-o betweehd bene t of the change
and the disruption it will cause. This disruption comes from the very esign of the
routers and routing protocols underlying the Internet's operatin. First, since the
Internet is composed of many smaller networks, in order to detemne a path between
two end points, a distributed calculation involving many of the netwdks is necessary.
Therefore, during any network event that requires a calculatiorthere will be a pe-
riod of time when there are disagreements among the routers in thi@rious networks,
potentially leading to the situation where there is no path available beteen some
end points. Second, selecting routes involves computations a&asillions of routers
spread over vast distances, multiple routing protocols, and highlyustomizable rout-
ing policies. This leads to very complex software systems. Like anyngalex software,
routing software is prone to implementation errors, obugs Given these disruptions,
operators must make tremendous e ort to minimize their e ect. No only does this
lead to a lot of human e ort, it also increases the opportunity for mitakes in the
con guration { a common cause of outages.

We believe that with a refactoring of today's router software we camake the
network infrastructure more accommodating of change, and thefore more reliable
and easier to manage.

First, we tailor software and data diversity (SDD) to the unique prerties of
routing protocols, so as to avoid buggy behavior at run time. Our lmstolerant router
executes multiple diverse instances of routing software, and useging to determine
the output to publish to the forwarding table, or to advertise to neghbors. We

designed and implemented a router hypervisor that makes this pdiiglism transparent
i

to other routers, handles fault detection and booting of new roet instances, and
performs voting in the presence of routing-protocol dynamics, ithout needing to
modify software of the diverse instances.

Second, we argue that breaking the tight coupling between the péigal and logical
con gurations of a network can provide asingle general abstraction that simpli es
network management. Speci cally, we propose VROOM (Virtual ROters On the
Move), a new network-management primitive where virtual routes can move freely
from one physical router to another. We present the design, impreentation, and
evaluation of novel migration techniques for virtual routers with gher hardware or
software data planes.

Finally, we introduce the concept of router grafting. This capabilityallows an
operator to rehome a customer with no disruption, compared to datimes today
measured in minutes. With our architecture, this rehoming can be plermed com-
pletely transparently from the neighboring network { where the cstomer's router is
not modi ed and is unaware migration is happening.

Together, these three modications enable network operatorsotperform the
desired change on their network without (i) possibly triggering bugs routers that
causes Internet-wide instability, (i) causing unnecessary networre-convergence
events, (iii) having to coordinate with neighboring network operats, or (iv) needing

an Internet-wide upgrade to new routing protocols.

Acknowledgements

First and foremost, | would like to thank my family. To my wife, Kristen, | might
have been crazy to do this, but you were there supporting me eyestep of the way.
To my children, Braden and Devin, you amaze me each and every ddyaybe you'll
read this one day when you're older and understand what | was doiadj those years.
And to my mom, your strength helped push me to nish what | startel.

| will be forever indebted to my advisor, Jennifer Rexford. She gavme the space
| needed to be creative, the guidance | needed to do great workydaprovided me
with the tools to be a great researcher for life. 1 cannot nd the wals to express how
amazing of a person she is. To work with her was such a great expecie and | feel
very fortunate that | had this opportunity. | can only hope to help future students
like she has helped me.

| would like to thank my committee for their great help in completing thisdis-
sertation { Kobus van der Merwe, Matthew Caesar, Ruby Lee, an¥ung Chiang.
Kobus and Matt were also signi cant contributors and mentors in tle technical direc-
tion of this dissertation (Kobus on the VROOM and Grafting work andMatt on the
Bug-Tolerant Router work). Their insight, knowledge, and guidane were invaluable.
Ruby and | worked closely together on research that falls outsidé the scope of this
dissertation. She taught me a great deal about security and hastten me very exited
about the eld.

| would also like to thank other direct contributors to this dissertaton { Minlan
Yu, Yi Wang, and Michael Schapira. Not only did collaborating with then directly
help this dissertation, but they are great people and it was a pleaguworking with
each of them.

| would also like to thank Andy Bavier, Mike Freedman, and Rob Harriso for
their incredible feedback on the many things I've worked on at Printen. | credit

Andy for teaching me a lot about how to write a paper. And | would simildy like
%

to thank Jakub Szefer for our work together on NoHype. We pusd though and
achieved something great with that.

| came to Princeton after seven years working for Xilinx. | owe a lottPhil James-
Roxby (who actually proof read all of my papers at Princeton), Gaton Brebner, and
Steve Guccione for being great friends and mentors, even afteleft. Having three
great people to lean on over the years helped a lot (from deciding t@ dpack to
school, to applying, to pushing through those middle years of the HD. when the
initial excitement has worn o but there is still a long time left).

Similarly, grad school wouldn't be grad school without my fellow studwgs. |
would like to thank my friends in the electrical engineering and compeat science
departments and in particular the rest of the Cabernet group (p&t and present). It
was great fun knowing them and learning from them.

And nally, | would like to thank Intel for the fellowship during my nal year.

Vi

| dedicate this dissertation to the memory of my dad, Robert Keller.
He was the one who introduced me to computers at a young age { goiall the way

back to the TRS-80. | wish he could have been here to see me nishutb'm

thankful he at least got to see me start.

Vii

Contents

Abstract i
Acknowledgments. %
Listof Tables Xiii
Listof Figures. e Xiv
1 Introduction 1
1.1 Change Happens. i i 2
1.1.1 Equipment Failure 3
1.1.2 Planned Maintenance of Equipment and Software 4
1.1.3 Updated Inter-domain Policy and Connectivity 4
1.1.4 Changes to Optimize Resource Utilization. 6
1.1.5 Service Deployment and Evolution. 7
1.2 ChangeisPainful. 8
1.2.1 Because Routing Software is Distributed 8
1.2.2 Because Routing Software is Complex. 9
1.2.3 Because Routing Software is Congurable. 11
1.3 Refactoring Router Software. 12
1.4 RouterTrends. 15

2 Hiding Routing Software Bugs from Adjacent Routers with th e Bug-
Tolerant Router 20

viii

2.1 Introduction 20

2.1.1 Challenges in dealing with router bugs. 20
2.1.2 The case for diverse replication in routets. 22
2.1.3 Designing a Bug-Tolerant Router. 23
2.2 Software and Data Diversity in Routers. 24
2.2.1 Diversity in the software environment. 25
2.2.2 Execution environment diversity. 29
2.2.3 Protocoldiversity. 30
2.3 Bug Tolerant Router (BTR) 31
2.3.1 Making replication transparent 31
2.3.2 Dealing with the transient and real-time nature of routers. . 34
2.4 Router Hypervisor Prototype 36
2.4.1 Wrapping the routing software. 37
2.4.2 Detecting and recovering from faults. 38
2.4.3 Reducing complexity. L oo 39
25 Evaluation. 41
2.5.1 \Voting in the presence of churn. 42
2.5.2 Processingoverhead. o L. 47
253 Eectonconvergence 48
2.6 DISCUSSION. 50
27 Related Work 52
2.8 SUMMANY o e e e 54

Decoupling the Logical IP-layer Topology from the Physica | Topol-

ogy with VROOM 55
3.1 Introduction 55
3.2 Background e e 59

3.2.1 Flexible Link Migration 59

3.22 Related Work. 61

3.3 Network Management Tasks. 63
3.3.1 Planned Maintenance 63
3.3.2 Service Deployment and Evolution. 64
3.33 PowerSavings 65

3.4 VROOM Architecture 66
3.4.1 Making Virtual Routers Migratable 67
3.4.2 Virtual Router Migration Process. 69

3.5 Prototype Implementation 73
3.5.1 Enabling Virtual Router Migration 74
3.5.2 Realizing Virtual Router Migration 77

3.6 Evaluation. 79
3.6.1 Methodology 79
3.6.2 Performance of Migration Steps. 81
3.6.3 DataPlanelmpact. 82
3.6.4 Control Plane Impact. 86

3.7 Migration Scheduling. 88

3.8 Summary e e 89

Seamless Edge Link Migration with Router Grafting 91

4.1 Introduction 91
4.1.1 A Case for Router Grafting 92
4.1.2 Challenges and Contributions. 94

4.2 BGP Routing Withina Single AS. 97
4.2.1 Protocol Layers: IP, TCP, &BGP 97
4.2.2 Components: Blades, Routers, & ASes 99

4.3 Router Grafting Architecture 100
4.3.1 Copying BGP Session Conguration. 101

X

4.4

4.5

4.6

4.7

4.8

4.3.2 Exporting & Resetting Run-Time State. 103

4.3.3 Migrating TCP Connection & IP Link 105
4.3.4 Importing BGP Routing State. 106
Correct Routing and Forwarding. 108
4.4.1 Control Plane: BGP Routing State. 108
4.4.2 Data Plane: Packet Forwarding. 110
BGP Grafting Prototype 111
4.5.1 Conguring the Migrate-To Router 112
4.5.2 Exporting Migrate-From BGP State 112
4.5.3 Exporting Migrate-From TCP State. 113
45.4 Importingthe TCP State 113
4.5.5 Migrating the Layer-Three Link 114
4.5.6 Importing Routing State. 115
Optimizations for Reducing Impact. 115
4.6.1 Reducing Impact on eBGP Sessions. 115
4.6.2 Reducing Impact on iBGP Sessions 117
4.6.3 Eliminating Processing Entirely. 118
Performance Evaluation, 119
4.7.1 Grafting Delay and Overhead. 119
4.7.2 Optimizations for Reducing Impact. 121
Tra c Engineering with Grafting 124
4.8.1 TracEngineeringToday 124
4.8.2 Migration-Aware Trac Engineering 125
4.8.3 Practical Considerations. 128
4.8.4 The Max-Link Heuristic 129
4.8.5 Experimental Results on Internet2 130
4.8.6 Migration Improves Network Utilization 131

Xi

4.8.7 Frequent Migration is Not Necessary. 134

4.8.8 Only a Fraction of Links Need to be Migrated. 135
49 Related Work 137
4.10 SUMMANY . . . o o e e e e e e e e e e e e e 139

5 Conclusion 140
5.1 Summary of Contributions. 140
5.2 A Unied Architecture 143
53 Future Work.. 146

5.3.1 Monitoring in Addition to Voting for a Bug-Tolerant Router . 146
5.3.2 Hosted and Shared Network Infrastructure with VROOM . . 146

5.3.3 Router Grafting for Security. 147
54 Concluding Remarks. o 148
Bibliography 149

Xii

List of Tables

2.1

3.1

3.2
3.3

4.1
4.2

Example bugs and the diversity that can be used to avoid them.. . 26

The memory dump le size of virtual router with di erent numbers of
OSPFroutes e e 82
The FIB repopulating time of the SD and HD prototypes. 82

Packet loss rate of the data tra c, with and without migration tra c 85

Summary of notation used in model of tra ¢ engineering with migréon. 126
Comparison of the improvement over the original topology optimez
for routing only when performing grafting at di erent intervals (over 7

daystrac). e 135

Xiii

List of Figures

11
1.2

1.3
1.4
1.5
1.6

2.1
2.2
2.3

2.4

2.5
2.6
2.7
2.8

3.1
3.2

Generic diagram of arouterdesign. 3

Generic network of networks consisting of end users and automous

SYStEMS. e e e e e 5
Generic network consisting of routers and links. 7
Router software architecture. 10
Router software refactoring.. 18
Routertrends.. e 19
Architecture of a bug-tolerant router. 32
Implementation architecture. 37

E ect of bug duration on fault rate, holding bug interarrival times xed at
1.2 milionseconds. e e 43

E ect of bug interval on fault rate, holding bug duration xed at 600 sec-

ONAS. . . o e e e e e 43
E ect of voting on update overhead. 46
E ect of convergence time threshold. 46
BTR pass-throughtime. 48
Network-wide simulations, per-router convergence delay igtribution. .. 49
Link migration in the transport networks 59
The architecture of a VROOM router. 67

Xiv

3.3

3.4
3.5

3.6
3.7
3.8
3.9

4.1
4.2

4.3
4.4

4.5

4.6
4.7
4.8

4.9

VROOM's novel router migration mechanisms (the times at the bédm

of the sub gures correspond to those in Figure 3.4). 67
VROOM's router migration process. 69
The design of the VROOM prototype routers (with two types of dta

planes). 74
The diamond testbed and the experiment process. 79
The Abilene testbed o oL 81
Virtual router memory-copy time with di erent numbers of routes . . 81
Delay increase of the data tra c, due to bandwidth contention vith

migrationtrac e 85
Migration protocol layers. o 97
Migrating the session with X between route processor bladesofin

RP1tORP2). e 100
Migrating session with A between routers (fromBto C).. 101
Router grafting mechanisms { migrating a session with Route A (not

shown) from router Migrate-from to router Migrate-to. The b oxes marked

bgpd and network stack are the software programs. The boxes arked

RIB a, configa, and TCPa are the routing, con guration, and TCP state
respectively. e e e e e e e 102
A topology where AS 200 has migrate-from router A, migrate-tmuter

B, internal router F, and external routers C, D, and G, and remte

end-point E. 107
The router grafting prototype system.. 111
BGP session grafting time vs. RIBsize.. 120
The CPU uitilization at the migrate-to router during migration, with

a200kprex RIB. 121
Updates sent as a result of migration. 122

XV

4.10 Network model for tra ¢ engineering with migration. 126
4.11 Evaluation of max-link for a single 5-minute period. 132
4.12 Evaluation of max-link over 7 days of tra c { time-series.. 134
4.13 Evaluation of max-link over 7 days of tra ¢ { cumulative distribution

function. L 134
4.14 Fraction of tra c each user node sends in an example 5-minuteegod. 136
4.15 Cumulative distribution function of the number of links that needto

be migrated during each interval over 7 days of tra ¢ (2016 5-minte

intervals). Shown are three lines corresponding to di erent thrémlds

{ only links in the top X% of trac are migrated. 137

5.1 Unied architecture. 143

XVi

Chapter 1

Introduction

The Internet has become an integral part of our lives. Not only do amy of us have
high speed connections at our homes, we also have data connestion our mobile
devices as well as work at businesses that provide or rely on soft@accessible across
a network. In order to be able to visit a website, use a web service, wse any dis-
tributed software, the underlying infrastructure must provide eachability, and more
speci cally the Internet as a whole must provide global reachability {.e., any net-
worked device can communicate with any other networked devicey ¥ong as those
networked devices are not explicitly blocking the communication. Torpvide this
global reachability, the elements in the network infrastructure (i.e the routers) com-
municate with one another to determine the paths to take to reachach destination.
Any change to the underlying infrastructure, such as adding newgeipment or per-
forming maintenance on the existing equipment, causes the roueto determine a
new set of paths. Given the expansiveness of the Internet, clggs are continually
occurring. Not only do these changes cause transient disruptiongile new paths are
determined but they can also cause longer term disruptions wherense destinations
are unreachable for an extended period. For the most part, theicent Internet does

a reasonably good job at minimizing disruptions thanks to the tireless ort of the

many network operators. Moving forward, this task will be increasgly di cult as
(i) the size of the Internet grows, and (ii) applications which have nte signi cant
demands in terms of availability, such as remote health care and a srpower grid,
become more common. We believe that with a refactoring of today'suter soft-
ware we can make the network infrastructure more accommodagjrof change, and
therefore more reliable and easier to manage. In this chapter westrpresent some
background on the network management tasks necessary to mgie a network (Sec-
tion 1.1) and the disruption that the associated changes in the network irdstructure
can cause (Sectiorl.?2). We then detail our proposal to refactor router software in
order to accommodate these changes without disruption (Sectidn3). We wrap up
with a discussion of some recent trends in router design that enalitgs refactoring

that is seemingly impossible to realize in practice (Sectioh4).

1.1 Change Happens

To many, the Internet can be represented as a big cloud on a diagraconnecting
end users of some service (e.g., a web site) to the servers thatthbat service. Of

course, in reality, the Internet is a federation of thousands of imgbendently controlled
networks. To determine how to reach a particular destination, th@etwork elements
known as routers essentially communicate with one another (bothithin the same

network and between neighboring networks) to disseminate infoation about avail-

able paths.

These routers are in constant communication as the Internet is mstantly chang-

ing. Each individual network often undergoes some changes duriting normal course
of operation. To understand the di erent types of change, in thisection, we overview

several reasons for change.

1.1.1 Equipment Failure

As routers are physical, electronic equipment, the components Wit them are sus-
ceptible to failure. Routers have several important componentas shown in Figure
1.1 The interface cards have the connectors to the actual cablekmg with cus-
tom hardware to process each packet (e.g., decide which outputrpto forward the
packet on). The switching fabric, which is many times multiple cards, mvide a high
bandwidth and low latency connection between each of the line card§he route
processors run the software that computes the routing decis®such as determining
the paths that should be taken through the network. There areanmonly multiple
route processors in order to handle the processing load requirgdf course there are
additional required components such as power supplies and fansailie of those,
such as through a power outage, will cause the router to fail. FinaJlghe cables
connecting routers together, either electrical or optical, can aldail. Here the failure
is more likely in terms of physical damage (e.g., a cut) to the cable eithdue to

weather, construction, or vandals.

Route Processor Route Processor

Routing Software Routing Software

Operating System Operating System

Switching Fabric

Interface Interface Interface
Card Card Card

Figure 1.1: Generic diagram of a router design.

1.1.2 Planned Maintenance of Equipment and Software

Planned maintenance is a fact of life for network operators. Manynies this comes
in the form of an upgrade to the network or network componentsln order to keep
the network up-to-date, network operators routinely upgradéhe routing software or
patch the rmware in the interface cards to include the latest bug xes and features.
They may also need to add routers to keep up with growth or replac¢der equipment
with newer versions. Planned maintenance may also come in the forfaopreventa-
tive measure to address a possible problem before it arises and egusore signi cant
disruption. If components are showing signs of failure, such as digeincreased error
rates, operators can replace the individual components in the maldrly designed

routers.

1.1.3 Updated Inter-domain Policy and Connectivity

Beyond failure and maintenance of the equipment, change comesnfir managing the
operation of the network. As illustrated in Figurel.2, the Internet is composed of a
network of networks { each is known as an autonomous system (A&nd is run by
a di erent party. Through routing protocols, these networks eghange information
about the availability of paths so that the end users (clients, showas home users,
and servers, shown as data centers) spread throughout thedmet can communicate
with one another. For example, AS5 will announce to its neighbors @1 and AS4)
that they can go through AS5 to reach the block of IP addresses/ned by data center
A. This information will propagate throughout the network and evatually reach AS6
where it will know a path by which its customers (the home users) careach the web
service running in data center A.

By con guring the individual routers, network operators can speify policies about
which paths are preferred and what information should not be toldat speci ¢ neigh-

boring networks. For example, AS4 might be a paying customer of 25so0 AS4 might
4

not tell AS2 that AS2 can reach data center A through AS4. Eachhange in policy
is a change that can have Internet wide impact (or at least, impacthe neighboring
networks).

In managing the network, it may become necessary or highly desitalio change
which internal edge router a given neighboring network connectg,tor even which
route processor within a router handles the routing session. Thisight be for load
balancing purposes where one router is overloaded, so the nekwvoperator changes
the router (or route processor) which handles the routing sessiwith the neighboring
network. Such changing of edge routers might alternatively be siypto support a
customer request. Networks consist of a heterogeneous coltattof routers, both in
terms of vendor and in terms of model. As such, not all routers spprt the same
features. If an existing customer changes some requirementscts as requesting a
new quality of service feature, that is not supported on the edgeuter it is currently
connected to, network operators must change the handling of ah connection to

another router.

‘ -

a.b.c.0/24 . |\
cData Data
Sl Center
A B

Figure 1.2: Generic network of networks consisting of end usersdaautonomous
systems.

G

1.1.4 Changes to Optimize Resource Utilization

Network operators must also manage the resources within their owetwork (e.g.,
the available bandwidth of links, compute power of routers, and elec power of
network operation centers). Similar to determining paths througbut the Internet,
routing protocols are also used within one network to determine pag between ingress
and egress points. For example, in the example network in Figute3, to reach
destination destl from router A, a routing protocol might decide to follow the path
Al C! D. Routing decisions can also be based on more than simply the shette
distance. Tra c engineering is the act of recon guring the netwok to optimize the
ow of tra ¢, to minimize congestion. Today, tra ¢ engineering invo lves adjusting
the routing-protocol parameters to coax the routers into comying new paths that
better match the o ered tra c. For example, if the link between C and D is congested,
a network operator might prefer to re-route some of that tra c to follow C! B! D
instead of @ D directly.

In addition to making tra ¢ ow more e ciently within the network, op erators
can take advantage of the mostly predictable variations in tra ¢ vdumes in order to
save power. It was reported that in 2000 the total power consuption of the estimated
3.26 million routers in the U.S. was about 1.1 TWh (Tera-Watt hours) 41]. This
number was expected to grow to 1.9 to 2.4TWh in the year 2005 by #e di erent
projection models $1], which translates into an annual cost of about 178-225 million
dollars [31]. These numbers do not include the power consumption of the reqenar
cooling systems. However, today's routers are surprisingly powesensitive to the
tra c loads they are handlinglan idle router consumes over 90% of the power it
requires when working at maximum capacityd1]. Instead, operators must shut o
some routers during periods of lower tra ¢ in order to save powerTo make the tra c

that is handled by the router that is being shut down ow through a d erent router,

the operator needs to con gure the routers in a similar manner as done with tra c

engineering.

Figure 1.3: Generic network consisting of routers and links.

1.1.5 Service Deployment and Evolution

Deploying new services, like IPv6 or IPTV, is yet another reason fahanges to net-
works. Here, ISPs usually start with a small trial running in a contrbed environment
on dedicated equipment, supporting a few early-adopter custonse This is to ensure
that (i) the new services do not adversely impact existing serviceand (ii) the neces-
sary support systems are in place before services can be propsugported. As the
service moves past the initial test phase and into wider deploymerihe ISP will need
to restructure their test network, or move the service onto a lgrer network to serve
a larger set of customers. This roll-out is a substantial change tte¢ network as it
e ectively requires merging the con gurations of the routers on e network into the
routers on another network and resolving any con icts that arise Not only are the
con gurations merged, but the service is also expanded to be rum anore routers,

which require new con gurations.

1Support systems include con guration management, service moniring, provisioning, and
billing.

1.2 Change is Painful

Whether it's a change in topology or a change in policy/preferencesyhenever a
change does occur, that information must get disseminated thrghout the Internet.

This is achieved through routing protocols, which are realized in th@ifm of software
running on each router. Here, complexity comes from (i) the distrited (in terms of
many nodes working together to come to an agreement) and detafhized (in terms

of authority) nature of inter-domain routing, (ii) the substantial software running on
each router realizing these protocols, and (iii) the con gurability othis software in
order to support a wide variety of situations. Because of this cortgxity, change is

painful.

1.2.1 Because Routing Software is Distributed

Focusing on a single routing protocol, the border gateway protoc@BGP) is the
protocol used between networks under di erent administrative antrol (i.e., the au-
tonomous systems) in order to exchange available routes. Eachut® indicates some
properties about the path to the destination, such as which sequee of autonomous
systems will be traversed by tra c taking that route. At its core, there are two prim-
itive update messages: (i) announce the availability of a path to a ginedestination,
and (ii) withdraw the availability of a path to a given destination?.

When a router receives an update, that indicates that the statef the network has
changed. That router will re-run its own decision process to detaine the impact
on routes that it has chosen to use. If there is any change, theuter will notify its
neighbors. They, in turn will do the same thing. Where this causes agblem is that

the changes they (or neighbors further down the line) make may act the decisions

2Subsequent announcements about a previously announced pre & ectively replaces the previous
announcement { only the most recent announcement for a particlar destination is valid.

being made at this router. Therefore, as it is a distributed decision aking process,
there will be a period of time when there is disagreement within the neork.

When this occurs, such issues as black holes and loops occur. A blhaole is
when the routes used by one network sends data tra ¢ to anothienetwork thinking
that network has a path to the destination. The black hole occurs fen that network
does not know a path to the destination, so it drops the tra c. Logs are where data
tra ¢ continuously traverses the same networks without reachig the destination.
For example, network A thinks the path to the destination goes tlough Network B,
but B thinks the path to the destination goes through A. So, A serslits tra c to B,
who sends the tra c to A, and the tra ¢ keeps going around.

An added complication is that it takes time to process each changen brder to
not overwhelm the routers' processing capabilities, the use of timsehas become com-
monplace. For example, the MinRouteAdvertisementinterval (MRI) [85 parameter
in BGP is used to limit the sending of updates to once per interval (taay a value
of 30sec is common). Unfortunately, this makes it take longer fohé¢ network to
come to an agreement as the MRAI delays how quickly an update carake its way

throughout the network.

1.2.2 Because Routing Software is Complex

Selecting routes involves computations across millions of routersrspd over vast
distances, multiple routing protocols, and highly customizable routop policies. This
leads to very complex software systems.

As shown in Figurel.4(a), these routers typically run an operating system, and
a collection of protocol daemons which implement the various taskssiciated with
protocol operation. For example, shown are BGP, which is used farter-domain
routing (i.e., communicating with external networks), OSPF (Open Bortest Path

First), which is used for intra-domain routing (determining paths wihin the net-

9

work), and a command line for con guring static routes. The BGP pocess needs to
know the routes chosen by OSPF because the internal network tdisce is used in
BGP's calculation for selecting routes. For this, a route distributewill perform this
distribution.

In Figure 1.4(b), the BGP routing process is shown. For each neighbor of the
router, the process must maintain a session. This includes typicahit sockets type
functionality, as well as maintaining a state machine to track the vaous BGP states.
The stream of incoming data is split up into update messages and padgo the in-
coming Iter, which will drop or modify routes based on the router's on guration.
The update is then sent to the decision process, which performsetmain functional-
ity of the protocol { updating the RIB with the received update, reading from the the
routing information base (RIB) the routes for that same pre x fom the other neigh-
bors, and deciding which of the routes is best based on the con @ine preferences.
The chosen route is then passed to each of the outgoing lters, @mper neighbor,
where based on the con guration, the Iter can drop or modify theroute. Finally,
the update is sent to the neighboring router, possibly after someeldy (e.g., based

on the MRAI timer).

(a) System-wide router software. (b)BGP software architecture.

Figure 1.4: Router software architecture.

Like any complex software, routing software is prone to implemertian errors, or
bugs Due to the critical nature of routers in today's Internet, the e ect of a bug in
one of the routers can be tremendous and far reaching. This coewty has led to

10

several major Internet wide outages recentlys[, 89, 86]. In each case, a legitimate
con guration change in one network caused an update to be senhigh eventually
triggered a bug. This is especially damaging since there are only a limiteadmber
router vendors and models. So, a single update can be propagaterbughout the
network (in all directions), and trigger the bug on a number of rowdrs. This then
causes those routers to send out bogus updates, which can eitb@use neighboring
routers to shutdown the session (if the bogus update was malfoed) or actually use
and propagate the bogus route. The latter case is especially danmagsince byzantine
faults are harder to detect and localize than a bug which causes ash. Luckily, a
coordinated attack on the Internet routing system that exploitsthese bugs has not

occurred yet. Though, that would be a possible way to create a “atbnuke'[39].

1.2.3 Because Routing Software is Con gurable

Because of the e ects change can have, operators must go oth@ir way to minimize
the disruption. In fact, the cost of the people and systems that anage a network
typically exceeds the cost of the underlying nodes and linksg). Consider an example
where a router needs to be replaced. In some cases, it is possiblavtmd a disruption
due to the router going down through a series of recon gurationwhich gradually
changes the routing protocol parameters to coax tra c to not @ through the router in
question pO[51]. Of course, the side e ects of a recon guration, such as congence
and triggering router bugs, will still exist and can cause disruptionFurther, being a
human process, errors in the con gurations can and do occur. Mlonetwork outages
are actually caused by operator errors, rather than equipmenaifure [68).

Even if the operator is careful and the process can be automajagiven the large
and distributed nature of the Internet, an operator does not raly know the full e ect
of a given change before it is made. A network operator might altené con guration

of a router, e.g., to change which provider is preferred, which cassa previously

11

unused (but known) route to now be selected. This new route mighictually be a
black hole that the operator did not know about. While black holes cahappen as
a transient behavior of the convergence process, black holes st for hours, even

days [4]. Tracking down connectivity problems is a huge e ort for operatcs.

1.3 Refactoring Router Software

In order to better accommodate change in the Internet, we prase refactoring the
router software. We rst want to enable network operators to mke changes, which
if they are really just local changes, do not have any external impa For those
changes that do have an impact external to the network making & change, the
changes should not cause harmful network-wide e ects. Our amgach is to redesign
the routers rather than the routing protocols. With this, netwok operators can
immediately gain bene ts without having to coordinate with neighborig network
operators or waiting for a Internet-wide upgrade to some new piiacol.

As illustrated in Figure 1.5, the refactoring we are suggesting can be categorized by
the various levels at which a network and the network componentaie be viewed and
how they interact with other layers. For each boundary between yars, we provide a
system that breaks the tight coupling between the layers. In doingp, the underlying
infrastructure is more accommodating of change. Each is briey inbduced below,

with more detail in the chapters dedicated to each system.

Between the router software and the neighboring routers in t he network

(Chapter 2): The software running on routers is large and complex, and therego
can be quite buggy. In order for the rest of the network to opeta properly, we
are reliant on this single piece of software to behave correctly. A gy router can
send bogus messages to the neighboring routers. We proposekirg this reliance

on a single router software implementation. While providing the view o single

12

router instance to the operator and neighboring routers, with th Bug-tolerant router,
we internally restructure the software to allow multiple, diverse insinces of router
software to run in parallel 7). In doing so we are able to mask errors in any single
implementation. We make the case why this approach is necessargctive, and
possible. We also describe an architecture which deals with the unigpeoperties
of routing software { doing so while hiding the multiple instances and ciin among
the instances from both the network operator and neighboring ubers. We built a
prototype implementation consisting of a set of extensions built orop of Linux and
tested with multiple version of XORP P], Quagga [], and BIRD [1]. Experiments
with BGP message traces and the open-source routing softwatgning on our Linux-
based router hypervisor demonstrate that our solution scales targe networks and

e ciently masks buggy behavior.

Between the physical topology of routers and the logical IP | ayer topology

of routers (Chapter 3): The routing protocols work at the IP layer, essentially
viewing routers as nodes in a graph and determining paths betweeades. However,
this IP layer logical topology is tightly coupled to the underlying physial network.
If an operator needs to, for example, shut down a physical routéo perform some
maintenance (e.g., replace a power supply), the corresponding ead the logical IP
layer topology also must be shutdown. This then triggers the routg protocols to
adapt and is the source of disruption. We propose decoupling the icg instance of
a router from the physical box it runs on. This is done througvROOM (Virtual
ROuters On the Move), a new network-management primitive thatwids unnecessary
changes to the logical topology by allowing (virtual) routers to frdg move from one
physical node to another [03J. Revisiting the example of replacing a power supply,
with VROOM the (virtual) router can be migrated to a nearby router, the power
supply replaced, and the (virtual) router migrated back without eer changing the IP

layer topology. We present the design of novel migration technigsi€or virtual routers

13

along with a prototype implementation consisting of extensions to a®penVZ [5]

(virtualization software) and Quagga (routing software) basedystem. We evaluate
with both hardware (using NetFPGA [79]) and software (using Linux) data planes.
Our evaluation shows that VROOM s transparent to routing protools and results
in no performance impact on the data tra ¢ when a hardware-base data plane is

used.

Between the internal network and neighboring ASes (Chapter 4). The
connection between two networks involves the physical link betwee router in each
network along with a BGP session between those routers. Netwodperators rou-
tinely need to change which router an external network connects (e.g., to perform
maintenance, migrate load to a new router, or support a customegquest). Unfortu-
nately, the basic task of rehoming a BGP session requires shuttingwn the session,
recon guring the new router, restarting the session, and exchging a large amount
of routing information typically leading to downtimes of several minugs. This is due
to the router design which binds the links and session state to a singleuter. We
propose breaking this tight coupling. Instead, withRouter Grafting, parts of a router
are seamlessly removed from one router and merged into anothes]] We focus on
grafting a BGP session and the underlying link from one router to atieer with no
disruption. We show that grafting a BGP session is practical even wittoday's mono-
lithic router software. Our prototype implementation uses and exdnds Click [/Z], the
Linux kernel, and Quagga, and introduces a daemon that automatdhe migration
process. We also apply router grafting to intra-domain tra c engireering. Previously,
intra-domain tra c engineering was limited to controlling how trac o ws through
the network. With router grafting, we now have the additional capbility to control
where tra c enters and exits the network. We present a new optinzation framework

for determining what links to migrate. Our evaluation based on realra c traces

14

shows that with router grafting a network can carry 18.8% more & ¢ (at a similar

level of congestion) over optimizing routing alone.

1.4 Router Trends

While the proposed router software refactoring is seemingly radican actuality it
is in line with recent trends in router and network technology. We ar@roviding a
complete system solution that capitalizes on these trends. We aim show how the
router's software could be redesigned to build a more dependabléwark that better
accommodates change. Discussed here are some of these tream®mpanied by an

illustration of each in Figure 1.6.

Control plane, data plane split: (Figure 1.6(a)) The control plane of the router
handles the routing protocols, exchanging routing information bekeen routers. The
routes are stored in a data structure known as the routing inforation base (RIB). The
selected routes are sent to the data plane, which stores the reatin the forwarding
information base (FIB). The data plane of the router handles the@ual data tra c
by performing a fast lookup in the FIB to decide where to send eachagket. In
today's routers, there is a clear separation between the two fuimns { in many
cases, a physical separation between the route processor amelinterface cards. This
separation means that there is there is a clear interface of the in&etion between
the control plane and the data plane, which we utilize in the bug tolerd router to
perform voting on each message. Further, there is a clear sepgama of state { the
RIB is stored in the control plane's memory space, the FIB is stored the interface
card's memory. We take advantage of this separation with VROOM awe migrate

the control plane independently from the data plane.

Virtualization on routers: (Figure 1.6(b)) Virtualization is a technology that's

popular in servers to allow a single physical server to appear like it is ttiple vir-

15

tual servers. This enables simpler application management. Similarlgputers are
becoming so large that partitioning them into smaller units would also bbene cial.
As such, virtualization technology is making its way into routersq1][37]. As a rst
step, today's routers utilize physical separation to provide the ality to partition the

router's physical resources (line cards, route processors) imistinct units called log-
ical routers. Eventually, the routers will have virtualization techrology on both the
route processor (allowing multiple instances of router softwareaeh with their own
RIB) and on the interface cards (allowing multiple FIBs). With VROOM we utilize
the live machine migration capability that is standard in modern virtual machine

technology to perform the control plane migration.

Dynamic network-layer link technology: (Figure 1.6(c)) In order for two neigh-
boring routers to communicate, they need a link connecting them. ke this could

be simply a physical cable, in today's networks, the link connecting twrouters ac-
tually goes through an underlying layer-2 network (e.g., optical swéhes). They have
the ability to dynamically setup and tear down network-layer links, wih an extremely
short switchover time. We capitalize on this in both VROOM and routergrafting

where in order to migrate an entire virtual router or single routing ession, the un-
derlying links connecting two neighboring routers needs to be moveld the links are

physical cables which require manually unplugging from one router @then plugging
into a another router, migration would be infeasible. With dynamic netork-layer

link setup and tear down, migration can be seamless.

Redundancy: (Figure 1.6(d)) Given the critical nature of the Internet, networks

and routers are built with extra redundancy. The routers typicallyhave a hot standby
route processor which is synchronized with the active route prassor so that the hot
standby can take over for the active when the active fails3]. Further, the network

itself has additional capacity to deal with tra c spikes. As each of ar systems

require extra processing, with the redundancy present in the rters and network, the

16

necessary extra processing power is already available. With the btgderant router
we run multiple instances, which utilizes the extra processing power fauters. With
VROOM we migrate an entire virtual router, which requires a routerwith enough
space capacity to absorb that virtual router. With Router Grafing, we migrate
an individual link and associated session, which requires a spare ifiéee and some

incremental processing power.

17

Figure 1.5: Router software refactoring.

18

(a) Control/Data Plane Split. (b) Virtualization.

(c) Dynamic Links. (d) Redundancy.

Figure 1.6: Router trends.

19

Chapter 2

Hiding Routing Software Bugs
from Adjacent Routers with the

Bug-Tolerant Router

2.1 Introduction

This chapter focuses on the inherent complexity of the softwardnat is running on
the routers in the Internet. These routers typically run an operang system, and
a collection of protocol daemons which implement the various taskssiciated with
protocol operation. Like any complex software, routing softwaris prone to imple-
mentation errors, orbugs In this chapter, we adapt diverse replication to build router
software that is not only tolerant of bugs but utilizes replication in a nanner that is

completely transparent to neighboring routers.

2.1.1 Challenges in dealing with router bugs

The fact that bugs can produce incorrect and unpredictable betiar, coupled with

the mission-critical nature of Internet routers, can produce dastrous results. This

20

can be seen from the recent spate of high-pro le vulnerabilities, tages, and huge
spikes in global routing instability [37, 89, 86, 29, 45, 42, 25, 71]. Making matters
worse, ISPs often run the same protocols and use equipment fréine same vendor
network-wide, increasing the probability that a bug causes simult&ous failures or
a network-wide crash. While automated systems cgreventmiscon gurations from
occurring K6, 47], these techniques do not work for router bugs, and in fact the
state-of-the-art solution today for dealing with router bugs invtves heavy manual
labor|testing, debugging, and xing code. Unfortunately operators must wait for
vendors to implement and release a patch for the bug, or nd an intediate work
around on their own, leaving their networks vulnerable in the meantim

Worse still, bugs are often discovered onligfter they cause serious outages. While
there has been work on dealing with failures in networks’§, 75, 5¢], router bugs
di er from traditional \fail-stop" failures (failures that cause the router to halt in
some easily-detectable way) in that they violate the semantics ofgiocol operation.
Hence a router can keep running, but behave incorrectly { by adsésing incorrect
information in routing updates, or by distributing the wrong forwarding-table entries
to the data plane, which can trigger persistent loops, oscillationsapket loss, session
failure, as well as new kinds of anomalies that can't happen in corrécbehaving pro-
tocols. This fact, coupled with the high complexity and distributed nture of Internet
routing, makes router bugs notoriously di cult to detect, localize,and contain.

As networks become better at dealing with traditional failures, ands systems
that automate con guration become more widely deployed, we expebugs to be-
come a major roadblock in improving network availability. While we ackneledge
the long-standing debate in the software engineering community evhether it is pos-
sible to completely prevent software errors, we believe unforesasteractions across

protocols, the potential to misinterpret RFCs, the increasing fuctionality of Internet

21

routing, and the ossi cation of legacy code and protocols will makeouter bugs a

\fact-of-life" for the foreseeable future and we proceed undéhat assumption.

2.1.2 The case for diverse replication in routers

Unlike fail-stop failures, router bugs can caus®yzantine faults, i.e., they cause
routers to not only behave incorrectly, but violate protocol specation. Hence,
we are forced to take a somewhat heavy-handed approach in deglinith them (yet
as we will nd, one that appears to be necessary, and one that ovesults indicate
is practical). In particular, our design uses a simple replication-bagepproach: in-
stead of running one instance of routing software, our design ss&router hypervisor
to run multiple virtual instances of routing software in parallel. The instances are
made diverse to decrease the likelihood they all simultaneously fail due to a bug.
We leveragedata diversity (to manipulate the inputs to the router, for example by
jittering arrival time of updates, or changing the layout of the exeutable in memory)
and software diversity(given multiple implementations of routing protocols already
exist, running several of them in parallel). We then rely on Byzantinéault tolerant
(BFT) techniques to select the \correct” route to send to the fowarding table (FIB),
or advertise to a neighbor.

The use of BFT combined withdiverse replication(running multiple diverse in-
stances) has proven to be a great success in the context of ttamhal software,
for example in terms of building robust operating systems and runtien environ-

ments [33, 62, 80, 110 20]. These techniques are widely used since heterogeneous

1 We use the termrouter hypervisor to refer to a software layer that maintains arbitrates between
outputs from multiple software replicas. However, our approach @es not require true virtualization
to operate, and may instead take advantage of lighter-weight cotainerization techniques [5].

2 For BGP, sources of non-determinism such as age-based tie-bikiag and non-deterministic
MED must be disabled. This is often done by operators anyway becase they lead to unpredictable
network behavior (making it hard to engineer tra c, provision netw ork capacity, and predict link
loads).

22

replicas are unlikely to share the same set of bugs3[62, 110. In this chapter, we
adapt diverse replication to build router software that is tolerant 6 bugs.

A common objection of this approach is performance overheads, nning mul-
tiple replicas requires more processing capacity. However, BFTdmal techniques
provide a simple (and low-cost) way to leverage the increasingly p#ed nature of
multicore router processors to improve availability without requiringchanges to router
code. Network operators also commonly run separaterdware instances for re-
silience, across multiple network paths (e.g., multihoming), or multipleauters (e.qg.,
VRRP [5§]). Some vendors also protect against fail-stop failures by running reot-
standby redundant control plane either on multiple blades within a sigle router or
even on a single processor with the use of virtual machineésj], in which case lit-
tle or no additional router resources are required. Since routerovkloads have long
periods with low load [L3], redundant copies may be run during idle cycles. Recent
breakthroughs vastly reduce computational overhead. [1] and memory usaged],

by skipping redundancy across instances.

2.1.3 Designing a Bug-Tolerant Router

In this chapter, we describe how to eliminate router bugs \virtually"(with use of vir-
tualization technologies). We design aug-tolerantrouter (BTR), which masks buggy
behavior, and avoids letting it a ect correctness of the network lger, by applying soft-
ware and data diversity to routing. Doing so, however, presentew challenges that
are not present in traditional software. For example, (i) wide-am routing protocols
undergo a rich array of dynamics, and hence we develop BFT-badedhniques that
react quickly to buggy behavior without over-reacting to transieninconsistencies
arising from routing convergence, and (ii) our design must interopste with exist-

ing routers, and not require extra con guration e orts from opeators, and hence we

23

develop arouter hypervisor that masks parallelism and churn €.g., killing a faulty
instance and bootstrapping a new instance).

At the same time we leverage new opportunities made available by thatare
of routing to build custom solutions and extend techniques previolysdeveloped for
traditional software. For example, (i) routers are typically built in amodular fashion
with well-de ned interfaces, allowing us to adapt BFT with relatively low complexity,
and implement it in the hypervisor with just a few hundred lines of codg(ii) using
mechanisms that change transient behavior without changing stéastate outcomes
are acceptable in routing, which we leverage to achieve diversity ass instances,
and (iii) routing has limited dependence on past history, as the e estof a bad FIB
update or BGP message can be undone simply by overwriting the FIB announcing
a new route, which we leverage to speed reaction by selecting a ewaarly, when
only a subset of instances have responded, and updating the rews more instances
nish computing. Moreover, router outputs are independent oftie precise ordering
and timing of updates, which simpli es recovery and bootstrapping ew instances.

The next section discusses how diversity can be achieved and hovedive it is,
followed by a description of our design (Sectioh.3) and implementation (Section2.4).
We then give performance results in Sectio.5, consider possible deployment sce-
narios in Section2.6, contrast with related work in Section2.7, and conclude in

Section2.8.

2.2 Software and Data Diversity in Routers

The ability to achieve diverse instances is essential for our bug-tcd@t router ar-
chitecture. Additionally, for performance reasons, it is importanthat the number
of instances that need to be run concurrently is minimal. Fortunatg, the nature of

routing and the current state of routing software lead to a situabn where we are able

24

to achieve enough diversity and that it is e ective enough that only amall number

of instances are needecde(g., 3-5, as discussed below). In this section we discuss the
various types of diversity mechanisms, in what deployment scenatiwey are likely to

be used, and how e ective they can be in avoiding bugs.

Unfortunately, directly evaluating the bene ts of diversity acros large numbers
of bugs is extremely challenging, as it requires substantial manuablar to reproduce
bugs. Hence, to gain some rough insights, we studied the bug regofrom the
XORP and Quagga Bugzilla database<?[6], and taxonomized each into what type
of diversity would likely avoid the bug and experimented with a small suget, some

of which are described in Table.1.3

2.2.1 Diversity in the software environment

Code base diversity : The most e ective, and commonly thought of, type of di-
versity is where the routing software comes from di erent code kas. While often
dismissed as being impractical because a company would never dephoytiple teams
to develop the same software, we argue that diverse softwaresba are already avail-
able and that router vendors do not need to start from scratchral deploy multiple
teams.

First, consider that there are already several open-source teusoftware packages
available (e.g., XORP, Quagga, BIRD). Their availability has spawned the formation
of a new type of router vendor based on building a router around ep-source soft-
ware B, 9].

Additionally, the traditional (closed-source) vendors can make esof open-source
software, something they have done in the pask(g., Cisco 10S is based on BSD

Unix), and hence may run existing open-source software as a \fakk" in case their

3To compare with closed-source software, we also studied publicly ailable Cisco I0S bug reports,
though since we do not have access to 10S source code we did notnrour system on them.

25

Bug Description E ective
Diversity

XORP The asynchronous event handler did not fairly allocate its e- | Version

814 sources when processing events from the various le descrp (worked in
tors. Because of this, a single peer sending a long burst 0f1.5, but not
updates could cause other sessions to time out due to missedl.6)
keepalives.

Quagga | The BGP default-originate command in the con guration le | Version

370 does not work properly, preventing some policies from being (worked in
correctly realized. 0.99.5, but

not 0.99.7)
XORP (See above) Update
814 (randomly
delay deliv-
ery)

Quagga | A race condition exists such that when a pre x that is with- | Update

(not drawn and immediately re-advertised, the router only propa | (randomly

led) gates to peers the withdraw message, and not the subsequentdelay deliv-
advertisement. Note: it was reported on the mailing list ti- | ery)
tled \quick route ap gets mistaken for duplicate, route is
then ignored,” but never led in Bugzilla.

XORP 31 | A peer that initiates a TCP connection and then immedi- | Connection
ately disconnects causes the BGP process to stop listening(can delay
for incoming connections. disconnect)

Quagga Static routes that have an unreachable next hop are correcyt | Connection

418 considered inactive. However, the route remains inactivex&en | (can inter-

when the address of network device is changed to somethin
that would make the next hop reachable (e.g., a next hop of
10.0.0.1 and an device address that changed from 9.0.0.2/2
to 10.0.0.2/24)

gpret change
as reset as
Awell).

Table 2.1: Example bugs and the diversity that can be used to avoid ¢im.

26

main routing code crashes or begins behaving improperly. Routerndors that do
not wish to use open-source software have other alternatives fmde diversity, for
example, router vendors commonly maintain code acquired from tpeirchase of other
companies §4].

As a nal possibility, consider that ISPs often deploy routers frommultiple ven-
dors. While it is possible to run our bug-tolerant router across physal instances, it
is most practical to run in a single, virtualized, device. Even without ecess to the
source code, this is still a possibility with the use of publicly available reer emu-
lators [2, 4]. This way, network operators can run commercial code along withup
hypervisor directly on routers or server infrastructure withoutdirect support from
vendors. While intellectual property restrictions arising from theirintense competi-
tion makes vendors reticent to share source code with one anathhis also makes it
likely that di erent code bases from di erent vendors are unlikely toshare code (and
hence unlikely to share bugs).

We base our claim that this is the most e ective approach partially fro previous
results which found that software implementations written by di elent programmers
are unlikely to share the vast majority of implementation errors in cde [/]. This re-
sult can be clearly seen in two popular open-source router softegrackages: Quagga
and XORP di er in terms of update processing (timer-driven vs. ev&-driven), pro-
gramming language (C vs. C++), and con guration language, leadingo di erent
sorts of bugs, which are triggered on di ering inputs. As such, cedbase diversity is
very e ective and requires only three instances to be run concuamtly.

However, e ectively evaluating this is challenging, as bug reports pycally do not
contain information about whether inputs triggering the bug would ause other code
bases to fail. Hence we only performed a simple sanity-check: we &elg 9 bugs from
the XORP Bugzilla database, determined the router inputs which trigered the bug,

veri ed that the bug occurred in the appropriate branch of XORP ode, and then

27

replayed the same inputs to Quagga to see if it would simultaneouslyilfawe then
repeated this process to see if Quagga's bugs existed in XORP. Instlsmall check,
we did not nd any cases where a bug in one code base existed in thbext mirroring
the previous ndings.

Version diversity : Another source of diversity lies in the di erent versions of the
same router software itself. One main reason for releasing a newsien of software
is to x bugs. Unfortunately, operators are hesitant to upgraddo the latest version
until it has been well tested, as it is unknown whether their particulacon guration,
which has worked so far (possibly by chance), will work in the latestevsion. This
hesitation comes with good reason, as often times when xing bugsamlding features,
new bugs are introduced into code that was previously working (i.e.phjust in new
features). This can be seen in some of the example bugs describetaible 2.1. With
our bug-tolerant router, we can capitalize on this diversity.

For router vendors that fully rely on open-source software, vsion diversity will
add little over the e ectiveness of code-base diversity (assumingey use routers from
three code bases). Instead, version diversity makes the moshse for router vendors
that do not fully utilize code-base diversity. In this case, running tk old version in
parallel is protection against any newly introduced bugs, while still beg able to take
advantage of the bug xes that were applied.

Evaluating this is also a challenge as bug reports rarely contain the gessary
information. Because of this, to evaluate the fraction of bugs shed across versions
(and thus, the e ectiveness), we ran static analysis tools (splintino, and its4) over
several versions of Quagga, and investigated overlap acrosssiars. For each tool,
we ran it against each of the earlier versions, and then manually clked to see how
many bugs appear in both the earlier version as well as the most ratgersion. We
found that overlap decreases quickly, with 30% of newly-introdudebugs in 0.99.9

avoided by using 0.99.1, and only 25% of bugs shared across the twosions. As it

28

is not 100% e ective, this will most likely be used in combination with otheforms

of diversity (e.g., diversity in the execution environment, described next).

2.2.2 Execution environment diversity

Data diversity through manipulation of the execution environment s been shown to
automatically recover from a wide variety of faults0]. In addition, routing software
speci ¢ techniques exist, two of which are discussed below. As clds®urce vendors
do not get the full bene t from running from multiple code bases, tey will need to
rely on data diversity, most likely as a complement to version diversityin that case,
around ve instances will be needed depending on the amount of drence between
the di erent versions. This comes from the result of our study whit showed version
diversity to be 75% e ective, so we assume that two versions will bam, each with two
or three instances of that version (each diversi ed in terms of egation environment,

which as we discuss below can be fairly e ective).

Update timing diversity: Router code is heavily concurrent, with multiple threads
of execution and multiple processes on a single router, as well as nmi routers si-
multaneously running, and hence it is not surprising that this createthe potential
for concurrency problems. Luckily, we can take advantage of thesynchronous na-
ture of the routing system to increase diversity, for example, by froducing delays
to alter the timing/ordering of routing updates received at di erert instances with-
out a ecting the correctness of the router (preserving any oeting required by the
dependencies created by the protocod.g., announcements for the same pre x from
a given peer router must be kept in order, but announcements frodi erent peer
routers can be processed in any order). We were able to avoid twbtlbe example
bugs described in Table2.1 with a simple tool to introduce a randomized short de-

lay (1-10ms) when delivering messages to the given instance. Futhby manually

29

examining the bug databases, we found that approximately 39% ofifgs could be

avoided by manipulating the timing/ordering of routing updates.

Connection diversity: Many bugs are triggered by changes to the router's network
interfaces and routing sessions with neighbors. From this, we caeesthat another
source of diversity involves manipulating the timing/order of eventshat occur from
changes in the state or properties of the links/interfaces or roung session. As our
architecture (discussed in Sectiof.3) introduces a layer between the router software
and the sessions to the peer routers, we can modify the timing anddering of con-
nection arrivals or status changes in network interfaces. For thtevo example bugs in
Table 2.1, we found they could be avoided by simple forms of connection divigys
by randomly delaying and restarting connections for certain instares. By manually
examining the bug database, we found that approximately 12% of bs could be

avoided with this type of diversity.

2.2.3 Protocol diversity

As network operators have the power to perform con guration wdi cations, some-
thing the router vendors have limited ability to do, there are additioml forms of
diversity that they can make use of. Here, we discuss one in partiau The pro-
cess of routing can be accomplished by a variety of di erent technigs, leading to
multiple di erent routing protocolsand algorithms, including IS-IS, OSPF, RIP, etc.
While these implementations di er in terms of the precise mechanism$ey use to
compute routes, they all perform a functionally-equivalent prockire of determining
a FIB that can be used to forward packets along a shortest pattota destination.
Hence router vendors may run multiple di erent routing protocols inparallel, voting
on their outputs as they reach the FIB. To get some rough sensé this approach,
we manually checked bugs in the Quagga and XORP Bugzilla databases deter-
mine the fraction that resided in code that was shared between pgoxols (e.g., the

30

zebradaemon in Quagga), or code that was protocol independent. Fromarr analysis,
we estimate that at least 60% of bugs could be avoided by switching &di erent

protocol.

2.3 Bug Tolerant Router (BTR)

Our design works by running multiple diverse router instances in paltal. To do this,
we need some way of allowing multiple router software instances to sitaneously
execute on the same router hardware. This problem has been widstydied in the
context of operating systems, through the use ofrtual machine (VM) technologies,
which provide isolation and arbitrate sharing of the underlying physal machine re-
sources. However, our design must deal with two new key challeagéi) replication
should be transparent and hidden from network operators and iggboring routers
(Section 2.3.1), and (ii) reaching consensus must handle the transient behaviof o
routing protocols, yet must happen quickly enough to avoid slowingeaction to fail-

ures (Section2.3.2.

2.3.1 Making replication transparent

First, our design should hide replication from neighboring routers. His is necessary
to ensure deployability (to maintain sessions with legacy routers),aency (to avoid
requiring multiple sessions and streams of updates between peges)d ease of main-
tenance (to avoid the need for operators to perform additionaloo guration work).
To achieve this, our design consists of euter hypervisor, as shown in Figure2.1
The router hypervisor performs four key functions:

Sharing network state amongst replicas: Traditional routing software receives
routing updates from neighbors, and uses information containedthvn those updates

to select and compute paths to destinations. In our design, multiplastances of router

31

virtual router instances

e

hypervisor \/ 5
Routing updates . update ||| Routing updates
(from peers) replicator FIB voter \?ot AT ——-» (to peers)
I]

FIB

Figure 2.1: Architecture of a bug-tolerant router.

software run in parallel, and somehow all these multiple router instaes need to learn
about routes advertised by neighbors. To compute routes, eaicliernal instance needs
to be aware of routing information received on peering sessions. wéwer, this must
happen without having instances directly maintain sessions with neigbring routers.
To achieve this, we use aeplicator component, which acts as a replica coordinator
to send a copy of all received data on the session to each routertamee within the
system. Note that there may be multiple sessions with a given peeruter (e.g.,
in the case of protocol diversity), in which case the replicator seadeceived data
to the appropriate subset of instancese(g., those running the same protocol). The
replicator doesnot need to parse update messages, as it simply forwards all data it
receives at the transport layer to each instance.

Advertising a single route per pre x: To protect against buggy results, which
may allow the router to keep running but may cause it to output an incrrect route,
we should select the majority result when deciding what informatiorotpublish to the
FIB, or to advertise to neighbors. To do this, we run avoter module that monitors
advertisements from the router instances, and determines theute the router should
use (e.g., the majority result)* Our design contains two instances of the voter: an
update voterthat determines which routing updates should be sent to neighbors

and a FIB voter that determines which updates should be sent to the router's FIB

4Since voting also reveals the set of misbehaving instances, our aggach also simpli es diagnosis,
as the hypervisor can explicitly report the set of buggy outputs it observes.

32

(forwarding table). As with the replicator, the update voter may \wte among a subset
of instances, for example, those belonging to the same protocolhelFIB voter will
vote among all instances, as all instances must come to the sameisiens with regard
to the FIB. To ensure advertisements are consistent with FIB caents, the update
voter and FIB voter must select the same routes. To handle thishe same voting
algorithm must be used on both updates and FIB changes.

To avoid introducing bugs, the voter should be as simple as possibleufosoter
implementation, containing multiple alternative voting strategies, is B4 lines of code).
We assume the voter is trusted (since it is much simpler than routeonde, we expect
it to have signi cantly fewer bugs and therefore the fact that it is asingle point-
of-failure is only a slight concern), and that replication is asynchraus (we do not
assume all instances respond equally fast, as instances may be slownute due to
bugs), and transparent (external routers do not interact diretly with the multiple
instances, so as to simplify deployment).

Maintaining a set of running replicas: BFT-based techniques rely on having a
su cient number of correctly-behaving replicas in order to achieveonsensus. Hence,
if an instance crashes or begins producing buggy output, we may Wit replace it
with a new copy. To achieve this, our hypervisor is responsible fbootstrappingthe
new instance when it begins running. For traditional routers, boatrapping involves
establishing a session with a neighboring router, which causes theghboring router
to send out update messages for each of the pre xes it has anmgrior in its RIB. To
avoid introducing externally visible churn, the hypervisor keeps a hisry of the last
update peers have sent for each pre x, and replays this for anyew instance upon
startup of that instance.

Presenting a common con guration interface: As there is no standardization
of the con guration interface in routers, each router has endedp with its own in-

terface. In the case where instances from di erent code base® aised, to keep the

33

network operator from needing to con gure each instance sepdely, a mechanism is
needed to hide the di erences in each con guration interface. Famately, this is not

unlike today's situation where ISPs use routers from multiple vendsr To cope with
this, ISPs often run con guration management tools which autonta the process of
targeting each interface with a common one. As such, we can rely tdrese same

techniques to hide the con guration di erences.

2.3.2 Dealing with the transient and real-time nature of

routers

The voter's job is to arbitrate amongst the \outputs" (modi catio ns to the FIB,
outbound updates sent to neighbors) of individual router instares. This is more
complex than simply selecting the majority result { during convergere, the di erent
instances may temporarily have di erent outputs without violating @rrectness. At
the same time, routers must react quickly enough to avoid slowingmgergence. Here,
we investigate several alternative voting strategies to addredsi$ problem, along with

their tradeo s.

Handling transience with wait-for-consensus : The extreme size of the Inter-
net, coupled with the fact that routing events are propagated glmally and individual

events trigger multiple routing updates, results in very high updateates at routers.

With the use of replication, this problem is potentially worsened, as derent instances
may respond at di erent times, and during convergence they mayemporarily (and

legitimately) produce di erent outputs. To deal with this, we usewait-for-consensus
voting, in which the voter waits for all instances to compute their rsults before de-
termining the majority vote. Because all non-buggy routers outt the same correct
result in steady-state, this approach can guarantee that K or fewer instances are
faulty with at least 2k + 1 instances running, no buggy result will reach the FIB or

be propagated to a peer.
34

Note that in practice, waiting for consensus may also reduce insiéity, as it
has an e ect similar to the MRAI (Minimum Route Advertisement Interval) timer
(routers with MRAI send updates to their neighbors only when a timeexpires, which
eliminate multiple updates to a pre x that occur between timer expirig). Namely,
forcing the voter to wait for all instances to agree eliminates the ed to advertise
changes that happen multiple times while it is waiting (e.g., in the presea®f unstable
pre xes). However, the downside of this is that reaction to evestmay be slowed in
some cases, as the voter must wait for tHe+ 1th slowest instance to nish computing

the result before making a decision.

Speeding reaction time with master/slave : Routers must react quickly to
failures (including non-buggy events) to ensure fast convergenand avoid outages.
At the same time, the e ects of a bad FIB update or BGP message ©ade undone
simply by overwriting the FIB or announcing a new route. To speed >ion time, we
hence consider an approach where we allow outputs to temporarilg ffaulty. Here,
we mark one instance as thenaster, and the other instances as slaves. The voter
operates by always outputting the master's result. The slaves' salts are used to
cross-check against the master after the update is sent or dugindle cycles. The
benet of this approach is that it speeds convergence to the ruimg time of the
master's computation. In addition, convergence is no worse thahe convergence of
the master, and hence at most one routing update is sent for eaceived update.
However, the downside of this approach is that if the master beces buggy, we
may temporarily output an incorrect route. To address this, wherailing over to a
slave, the voter readvertises any di erences between the slavesiting tables and the
routing table computed by the master. Hence, temporarily outpuing an incorrect
route may not be a problem, as it only leads to a transient problem thas xed when

the slaves overthrow the master.

35

Finally, we consider a hybrid scheme which we refer to asntinuous-majority.
This approach is similar to wait-for-consensus in that the majority esult is selected
to be used for advertisement or for population into the FIB. Howear, it is also similar
to master/slave in that it does not wait for all instances to computeresults before
selecting the result. Instead, every time an instance sends an @be, the voter reruns
its voting procedure, and updates are only sent when the majoritgsult changes. The
bene t of this approach is it may speed reaction to failure, and the gjority result
may be reached before the slowest instance nishes computing. efdownside of this
approach is that convergence may be worsened, as the majorigsult may change
several times for a single advertised update. Another downside tbis approach is
that voting needs to be performed more often, though, as we sthan our experiments

(Section 2.5) this overhead is negligible under typical workloads.

2.4 Router Hypervisor Prototype

Our implementation had three key design goals: (i) not requiring modcations to
routing software, (ii) being able to automatically detect and recowvefrom faults, and
(iif) low complexity, to not be a source of new bugs. Most of our desiga agnostic to
the particular routing protocol being used. For locations where ptocol-speci c logic
was needed, we were able to treat messages mostly as opaqueggrinmrhis section
describes our implementation, which consists of a set of extensidnslt on top of
Linux. Our implementation was tested with XORP versions 1.5 and 1.6, @agga
versions 0.98.6 and 0.99.10, and BIRD version 1.0.14. We focused oortg on sup-
porting BGP, due to its complexity and propensity for bugs. Sectio2.4.1describes
how we provide awrapperaround the routing software, in order for unmodi ed rout-
ing software to be used, and SectioR.4.2describes the various faults that can occur

and how our prototype detects and recovers from them.

36

2.4.1 Wrapping the routing software

To eliminate the need to modify existing router software, our hyp&risor acts as a
wrapper to hide from the routing software the fact that it is a partof a bug-tolerant
router, and allows the routing instances to share resources sugh ports, and access
to the FIB. Our design (Figure 2.2) takes advantage of the fact that sockets are used
for communicating with peer routers, and for communicating forwaing table (FIB)
updates to the kernel. Hence, our implementation intercepts saatkcalls from the
router instances using the LDPRELOAD environment variable and uses a modi ed
libc library, called hv-libc, to redirect messages to a user-space module, caledd,

which manages all communication.

Router Router
Instance 1 Instance 2
| hvlbe | | hvlibe
to Peer \ / to Peer
L e e
I to FIB

Figure 2.2: Implementation architecture.

The two key functions the hypervisor then needs to manage are dissed below:

Socket-based communications: To connect to peer routers (with TCP) and for
writing to the common FIB (with Netlink), the multiple routers need to share access
to a common identi er space €.g., port 179 in BGP). We handle this by intercepting
socket system calls in hv-libc, performing address translation in Hiac, and using
virtd as a proxy (e.g., when a router instance listens on port 179, instead they are
made to listen on a random port and virtd will listen on 179 and connedb each of

the random ports when receiving an incoming connection).

Bootstrapping new connections: When the BTR initially starts up, the routing
instances start with empty routing tables. In BGP, a session with ager is established

by creating a TCP connection, exchanging OPEN messages, and ramkledging the
37

OPEN message with a KEEPALIVE message. After the session is dsfiahed, the
peers exchange routing information. However, when replacing dléa instance, we
need to bootstrap it locally, to prevent the failure from being extarally visible (e.qg.,
sending aroute-refreshto a peer). Additionally, we need to bootstrap it indepen-
dently, to prevent the new instance starting in a faulty state €.g., bootstrapping o
another router instance). Since a router's state only depends time last received RIB
advertised by its neighbors, we add some additional logic to the hypesor to store
the last-received update for each (pre x,neighbor) pair. Then wdn a new instance is
started, the hypervisor replays its stored updates. To lower cgtexity, the hypervi-
sor treats the (pre x, neighbor) elds and other attributes in the packets as opaque

strings, and does not implement protocol logic such as route select

2.4.2 Detecting and recovering from faults

To deal with bugs, our hypervisor mustdetectwhich outputs are buggy (e.g., with
voting), and recoverfrom the buggy output (by advertising the voting result, and if

necessary restarting/replacing the buggy instance).

Detection: One of our main goals is that the BTR should be able to automatically
detect and recover from bugs a ecting correctness of the raats control or data
planes® Since our design fundamentally relies on detecting di erences autputs of
di erent instances, we need to handle every possible way their out{s could di er.
All faults can be generalized to four categories: (i) an instance skng a message
when it should not, (i) an instance not sending a message when it shau (iii)
an instance sending a message with incorrect contents, and (iv)dsuthat cause a
detectable faulty system event, such as process crashing orksebcerror. The rst
three categories are detected by using voting (the fourth catery is easily detectable,

so no further discussion is given). If an instance has a dierent comit from the

SWe do not address, for example, faults in logging.

38

majority, we consider it a fault. For example, in case (i) above, the imning update
will be the NULL update, in cases (ii) and (iii) the winning update will be tre
most-commonly advertised one. To avoid reacting to transient chges, voting is
only performed acrosssteady-stateinstance outputs, which have been stable for a
threshold period of time. We then mark instances whose steadyatt outputs di er
from those of the majority or those that are not yet stable as begfaulty (including

in schemes like master/slave, which perform this step after advésing).®

Recovery: In the common case, recovering from a buggy router simply involves
using the output from the voting procedure. However, to deal wit cases where the
router is persistently buggy, or crashes, we need some way to kihdarestart the
router. As a heuristic, we modi ed our hypervisor with afault thresholdtimeout. If
an instance continues to produce buggy output for longer than éithreshold, or if the
router undergoes a faulty system event, the router is killed. To nr@ain a quorum of
instances on which voting can be performed, the BTR can restarté failed instance,
or replace it with an alternate diverse copy. In addition, to supporthe master/slave
voting scheme, we need some way to overwrite previously-advegtisbuggy updates.
To deal with this, our implementation maintains a history of previouslyadvertised
updates when running this voting scheme. When the hypervisor swftes to a new
master, all updates in that history that di er from the currently advertised routes

are sent out immediately.

2.4.3 Reducing complexity

It is worth discussing here the role the hypervisor plays in the ovdtaeliability of
the system. As we are adding software, this can increase the pbgity of bugs in

the overall system. In particular, our goals for the design are thdi) the design is

SWe consider legitimate route- apping due to persistent failures and protocol oscillations to be
rare. However, we can detect this is occurring as the majority of istances will not be stable and we
can act accordingly.

39

simple implementing only a minimal set of functionality, reducing the set of @ampo-
nents that may contain bugs, and (ii) the design ismall, opening the possibility of
formal veri cation of the hypervisor { a more realistic task than veifying an entire
routing software implementation. To achieve these goals, our designly requires the
hypervisor to perform two functions: (i) acting as a TCP proxy, ad (ii) bootstrap-
ping new instances. Below, we described how these functions arefgrened with low
complexity.
Acting as a TCP proxy: To act as a TCP proxy simply involves accepting connections
from one end point (remote or local) and connecting to the other. Wén there is
a TCP connection already, the hypervisor simply needs to acceptédhconnection.
Then, upon any exchange of messages (in or out) the hypervisangly passes data
from one port to another. In addition, our design uses voting to nk& replication
transparent to neighboring routers. Here, the update messagare voted upon before
being sent to the adjacent router. However, this is simply compargnopaque strings
(the attributes) and does not involve understanding the values inhie strings.
Overall, our implementation included multiple algorithms and still was only514
lines of code. These code changes occur only in the hypervisor,uedg potential for
new bugs by increasing modularity and reducing need to understamaahd work with
existing router code. From this, we can see that the hypervisor sign is simple in
terms of functionality and much of the functionality is not in the critical section of
code that will act as a single point of failure.
Bootstrapping new instances: To bootstrap new instances requires maintaining some
additional state. However, bugs in this part of the code only a ecthe ability to
bootstrap new instances, and do not a ect the \critical path" of voting code. One
can think of this code as a parallel routing instance which is used to iratize the state
of a new instance. Of course, if this instance's RIB is faulty, the neinstance will be

started in an incorrect state. However, this faulty state would eflter be automatically

40

corrected €.g., if the adjacent router sends a new route update that overwritethe
local faulty copy) or it would be determined to be faulty €.g., when the faulty route
is advertised), in which case a new instances is started. Additionalljhe RIB that

needs to be kept is simply a history of messages received from thgaadnt router
and therefore is simple. Bootstrapping a new instance also requiietercepting BGP
session establishment. Here, the hypervisor simply needs to olsahe rst instance
starting a session (an OPEN message followed by a KEEPALIVE) andilssequent

instances simply get the two received messages replayed.

2.5 Evaluation

We evaluate the three key assumptions in our work:

It is possible to perform voting in the presence of dynamic wim (Section 2.5.1):
Voting is simple to do on xed inputs, but Internet routes are transent by nature.
To distinguish between instances that are still converging to the o®ct output from
those that are sending buggy outputs, our system delays votingutil routes become
stable, introducing a tradeo between false positives (incorrectligelieving an unstable
route is buggy) and detection time (during which time a buggy route \ay be used).
Since these factors are independent of the precise nature of bbgt depend on update
dynamics, we inject synthetic faults, and replay real BGP routingraces.

It is possible for routers to handle the additional overheaaf running multiple in-
stances (Section2.5.2): Internet routers face stringent performance requirements,
and hence our design must have low processing overhead. We ewaltiais by measur-
ing the pass-through timefor routing updates to reach the FIB or neighboring routers
after traversing our system. To characterize performance ueaddi erent operating
conditions, we vary the routing update playback rate, the sourcef updates (edge vs.

tier-1 ISP), and the number of peers.

41

Running multiple router replicas does not substantially wsen convergence (Sec-
tion 2.5.3): Routing dynamics are highly dependent on the particular sequence
of steps taken to arrive at the correct route { choosing the wransequence can vastly
increase processing time and control overhead. To ensure ousiga does not harm
convergence, we simulate update propagation in a network of BTRand measure con-
vergence time and overhead. For completeness, we also crodislage these against

our implementation.

2.5.1 Voting in the presence of churn

To evaluate the ability to perform voting in the presence of routinglwurn, we replayed
BGP routing updates collected from Route Views7] against our implementation.
In particular, we con gure a BGP trace replayer to play back a 100 ¢ur long trace
starting on March 1st 2007 at 12:02am UTC. The replayer plays badhkultiple streams
of updates, each from a single vantage point, and we collect infortita on the amount
of time it takes the system to select a route. Since performance ispkndent only
on whether the bug is detected by voting or not, and independentf the particular
characteristics of the bug being injected, here we use a simpli ed ol of bugs (based
on the model presented in SectioB.4.2, where bugs add/remove updates and change
the next-hop attribute for a randomly-selected pre x, and havewo parameters: (i)
duration, or the length of time an instance's output for a particular pre x is uggy, (ii)
interarrival time, or the length of time between buggy outputs. As a starting point
for our baseline experiments, we assume the length of time a bug et® a router,
and their interarrival times, are similar to traditional failures, with duration of 600

seconds, and interarrival time of 2 million seconds 4.

42

1 T T YT TITILLLAA A
; ‘\“\uuu : s
0,01 [>l

g I "“in......“n\“ i
£ 0.0001 [ttt ‘ PO & o i
Q . R : [' Ny,)
g 'ﬁa\““‘lilIl.l.l!llllllll..ll.lli“ : 7
o 1e-06 % s b B .
Q ;
§ 3 : : :
% le-08 i ClS. MAJOr m— 7
s master ssssssss : :

1e-10 B std_ router mnnnnnnn I e

1e'12 Walt-3 e— HHHIIHIIII"I:Hﬂ|IHﬂIIII"IIIIHHH“HII"I

1 100 10000 1le+06 le+08

Bug duration [sec]

Figure 2.3: E ect of bug duration on fault rate, holding bug interarrival times xed at 1.2
million seconds.

0.01
0.0001

1le-06

Fault rate [fraction]

1e-08 |- ClS. Major = N\

I master ===== . : : 1
1810 I std router seeneen, N e]
le12 by WA3

1000 10000 100000 1le+06 1le+07 le+08
Bug interarrival time [sec]

Figure 2.4: E ect of bug interval on fault rate, holding bug duration xed at 600 seconds.
Comparison of voting strategies

There is a very wide space of voting strategies that could be used inrcsystem.
To explore tradeo s in this space, we investigated performance der a variety of
alternative voting strategies and parameter settings. We focusncseveral metrics:
the fault rate (the fraction of time the voter output a buggy route), waiting time

(the amount of time the voter waits before outputting the corretroute) and update
overhead(the number of updates the voter output).

Fault rate: We investigate the fault rate of the voting strategies by injecting
synthetic faults and varying their properties. First, we varied themean duration
and interarrival times of synthetic faults (Figures2.3 and 2.4). We found that for

very high bug rates, wait-3 (waiting forK = 3 out of R = 3 copies to agree before

43

selecting the majority result) outperformed master/slave. This &ppened because
wait-3 is more robust to simultaneous bugs than master/slave, asaster/slave takes
some short time to detect the fault, potentially outputting an incorect route in the
meantime. In addition, unless the bug rate is extremely high, contirmus-majority
performs nearly as well as wait-3, with similar robustness and updabverhead.

Overall, we found that recovery almost always took place within oneesond.
Increasing the number of instances running in parallelR) makes the router even
more tolerant of faults, but incurs additional overheads. Also, wafor-consensus and
continuous-majority gain more from larger values dR than the master/slave strategy.
For example, when moving fromR = 3 to R = 4 instances, the fault rate decreases
from 0.088% to 0.003% with wait-for-consensus, while with masteldse the fault
rate only decreases from 0.089% to 0.06%.

However, there may be practical limits on the amount of diversity dgevable (for
example, if there is a limited number of diverse code instances, or aund on the
ability to randomize update timings). This leads to the question|if we have a xed
number of diverse instances, how many should be run, and how mastyuld be kept
as standbys (not running, but started up on demand)? We foundhat standby routers
were less e ective than increasindr, but only for small values ofR, indicating that
for large numbers of diverse instances, most instances could beasgde as standbys
to decrease runtime overhead. For example, ® = 3, under the continuous-majority
strategy we attain a fault rate of 0.02%. IncreasindgR to 4 reduced the fault rate
to 0.0006%, while instead using a standby router witlRR = 3 reduced the fault rate
to 0.0008%. This happens because buggy outputs are detectedckly enough that
failing over to a standby is nearly as e ective as having it participate invoting at
every time step. Because of this, operators can achieve much bétbene ts of a
larger number of instances, even if these additional instances aoa as lower-priority

(e.g., only updated during idle periods) standbys.

44

Waiting time: Di erent voting algorithms provide di erent tradeo s between
waiting time (time from when a new best-route arrives, to when it is dput by the
voter) and the fault rate. The master/slave strategy provides lie smallest waiting
time (0.02 sec on average), but incurs a higher fault rate (0.0006% @average),
as incorrect routes are advertised for a short period whenevdret master becomes
buggy. Continuous-majority has longer wait times (0.035 sec on asge), but lower
fault rate (less than 0.00001% on average), as routes are not it until multiple
instances converge to the same result. The wait-for-consenstigtegy's performance
is a function of the parameterK |larger values of K increase wait time but decreases
fault rate. However, we found that increasindk to moderate sizes incurred less delay
than the pass-through time for a single instance, and hence setiik = R o ered a

low fault rate with only minor increases in waiting time.

Update overhead: Finally, we compare the voting strategies in terms of their
e ect on update overhead (number of routing updates they gerege), and compare
them against a standard router §td. router). Intuitively, running multiple voters
within a router might seem to increase update overhead, as the eotmay change
its result multiple times for a single routing update. However, in praite, we nd
no substantial increase, as shown in Figur2.5 which plots a CDF of the number
of updates (measured over one second intervals). For the masitave strategy this
is expected, since a single master almost always drives computatiom wait-for-
consensus, no updates are generated until all instances arrivea answer, and hence
no more than one outbound update is generated per inbound up@atas in a standard
router. Interestingly, the continuous-majority strategy also des not signi cantly
increase update overhead. This happens because when an updatiers the system,
the voter's output will only change when the majority result changg, which can only

happen once per update.

45

c
S : ‘
R e
2 o7fo |
g ‘
B 0Bt cts. major
3 ; master =

0.5 oo std. router - '-

: wait-3
0.4 e e
1 10 100

Updates per 1-sec interval

Figure 2.5: E ect of voting on update overhead.

0.02 T rr— 1400

0.018 cts. major,wait-3 fault-rate | 1)
—_ 0.016 f@ cts. major,wait-s false-neg i : 1200 §
5 ’ L % master fault-rate s— | 1000 O
5 0014 master false-neg ssssssss 2
g 0.012 - < 10]0) g
) 0.01 - K%}
8 0.008 4600 £
S 0006 00 3
% 0004 | 2
0.002 |- LT =

0 sl ML { | TV Ly 0

0.01 0.1 1 10 100

Convergence timeout (T) [sec]

Figure 2.6: E ect of convergence time threshold.
Performance of fault detection

Protocols today often incorporate thresholds (such as BGP's MRAimer) to rate-
limit updates. To evaluate the level of protection our scheme proves against unstable
instances, as well as the ability to distinguish steady-state from dnsient behavior,
we incorporated a con gurable timeout parameter T) in fault detection to identify
when a route becomes stable. Figur26 shows the tradeo as this parameter varies
between thefalse negative ratgthe number of times a non-buggy instance is treated
as buggy), and thefault rate (i.e., the false positive rate of the voter, or the fraction
of time a buggy route is treated as non-buggy). We found that a¥ increases,
the false negative rate decreases, as larger valuesTofeduce the probability that
transient changes will be considered when voting. The false negatikate does not

vary among di erent voting strategies, as fault detection is only pgormed on steady-

46

state outputs, and the algorithmic di erences between the stratgies disappear when
performed on outputs that are not dynamically changing. The faultate increases
with T, as when a bug does occur, it takes longer to detect it. Interesgly, the
fault rate initially decreases with T; this happens because for low values ®f, more
instances are treated as buggy, giving fewer inputs to the votend increasing the
probability of an incorrect decision. Overall, we found that it was pasble to tuneT

to simultaneously achieve a low fault rate, low false negative, and lovetgction time.

2.5.2 Processing overhead

We evaluate the overhead of running multiple instances using our hggvisor with
both XORP- and Quagga-based instances running on single-core 8z2Gntel Xeon
machines with 2 GB RAM. We measure theipdate pass-through timas the amount
of time from when the BGP replayer sends a routing update to when @esulting
routing update is received at the monitor. However, some updat@say not trigger
routing updates to be sent to neighbors, if the router decides tantinue using the
same route. To deal with this case, we instrument the software uter's source code
to determine the point in time when it decides to retain the same routeWe also
instrument the kernel to measure the~IB pass-through time as the amount of time
from when the BGP replayer sends an update to the time the new rtauis re ected
in the router's FIB (which is stored as the routing table in the Linux kenel).

Figure 2.7 shows thepass-throughtime required for a routing change to reach
the FIB. We replayed a Routeviews update trace and varied the numer of Quagga
instances from 1 to 31, running atop our router hypervisor on a gjie-core machine.
We found the router hypervisor increases FIB pass-through tini®y 0.08% on average,
to 0.06 seconds. Our router hypervisor implementation runs in usspace, instead of
directly in the kernel, and with a kernel-based implementation this oveead would

be further reduced. Increasing the number of instances to 3 irrced an additional

47

D
P Lt LL L

© fib-1 semmmmEm
fib-3 1 -
fib-5
fib-11 mimimimim
fib-31 mimimimn
stdl. router —

Cumulative fraction
o
(&)}
T T T T T T T T T
I I N N AN (NN N B |

0 [l
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Time [sec]

Figure 2.7: BTR pass-through time.

1.7% increase, and to 5 incurred a 4.6% increase. This happens beeathhe multi-
ple instances contend for CPU resources (we found that with mulbce CPUs this
overhead was substantially lower under heavy loads). To evaluatenbormance un-
der heavier loads, we increased the rate at which the replayer pldyback routing
updates by a factor of 3000x. Under this heavy load, FIB pass+itugh times slow
for both the standard router and BTR due to increased queuing thys. However,
even under these heavy loads, the BTR incurs a delay penalty of laban 23%. To
estimate e ects on convergence, we also measured tingdate pass-through times
the time required for a received routing change to be sent to neighting routers.
We found this time to be nearly identical to the FIB pass-through tine when the
MRAI timer was disabled. as updates are sent immediately after uptiag the FIB.
When MRAI was enabled (even when set to 1 second, the lowest pgbkssetting for
Quagga), the variation in delay across instances was dwarfed bylaleincurred by
MRAI. Finally, we found that switching to the master/slave voting strategy reduces
pass-through delay, though it slightly increases the fault rate, afiscussed previously

in Section2.5.1

2.5.3 E ect on convergence

Next, we study the e ect of our design on network-wide convergee. We do this by

simulating a network of BTRs (each with eight virtual router instan@s) across three
48

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Cumulative fraction

std. router ========
P | N

1 10
Convergence time [sec]

Figure 2.8: Network-wide simulations, per-router convergence delay idtribution.

network-level graphs: the entire AS-level topology (labeledS in Figure 2.8) sam-
pled on Jan 20 2008, AS 3967's internal network topology as colletfeom Rocketfuel
(labeled 3967, and cliques (labeledCQ) of varying sizes (since a clique contains the
\worst case" for routing, allowing potential to explore alln! possible paths in a clique
of sizen). To determine ordering of when BTRs respond, we run our implemttion
over routing updates, record pass-through times, and replay ¢ém within our simu-
lation framework. Since for the master/slave approach there is rmect on network
operation unless a bug is triggered (since the slaves only operatestandbys), we
focus our evaluation on the other strategies.

We found several key results. First, as shown in Figuz8, the voting schemes do
not produce any signi cant change in convergence beyond the dglgenalty described
in previous sections, as compared to a network only containing stdard routers. We
found this delay penalty to be much smaller than propagation delaysceoss the net-
work, and to be reduced further when MRAI is activated. As the nonber of instances
increases (up to the number of processor cores), continuougjority's delay decreases,
because it becomes increasingly likely that one will nish early. The opgite is true
for wait-for-consensus, as the delay of the slowest instancesctnmes increasingly
large. Next, while we have thus far considered wrtual router level deployment,
where voting is performed at each router, we also consideredvistual network de-

ployment, where voting is performed at the edges of the networka our experiments
49

we ran eight virtual networks and found that this speeds up conugence, as routers
do not have to wait for multiple instances to complete processing loeé forwarding
updates. Hence, for small numbers of diverse instances, votingrgouter has smaller
convergence delay. However, virtual-network approaches regusubstantially more
control overhead than the virtual-router voting schemes. To attess this, we found
that simple compression schemesd] that eliminate redundancy across updates could
reduce the vast majority of this overhead. Finally, to validate our iswulations, we
set up small topologies on Emulab4f], injected routing events, and compared with

simulations of the same topology. We found no statistically signi cantli erence.

2.6 Discussion

For simplicity, this paper discusses the one particular design point. dwever, our

architecture is amenable to deployment on varying levels of granuigr

Server-based operation: Instead of running the diverse instances within a single
router, their computations may be o oaded to a set of dedicated exvers running in
the network (e.g., an RCP-like platform [2€§]). These servers run the router software
in virtualized environments, and cross-check the results of routerunning within the
network. When a buggy result is detected, virtual router instanes may be migrated
into the network to replace the buggy instance. Alternatively, theservers may be
con gured to operate inread-only mode such that they may signal alarms to network
operators, rather than participate directly in routing.

Network-wide deployment: Instead of running instances of individual router
software in parallel, ensembles of routers may collectively run entivértual networks
in parallel. Here, the outputs of a router are not merged into a singl&B, or as a single
stream of updates sent to its neighbors. Instead, each routeramtains a separate

FIB for each virtual network, and voting is used at border routes to determine which

50

virtual network data packets should be sent on. The advantagd this approach is it
allows di erent routing protocols to be used within each virtual netvark, making it
simpler to achieve diversity. For example, OSPF may be run in one netvk and IS-IS
in another. In addition, convergence speed may be improved, as ividual physical
routers do not have to wait for their instances to reach a majoritpefore sending a

routing update.

Process-level deployment: Our design runs multiple instances of routing soft-
ware in parallel, and hence incurs some memory overhead. On mantemet routers
this is not an issue, due to low DRAM costs, and the fact that DRAM gaacity
growth has far exceeded that of routing table growth. That saidf it is still desirable
to decrease memory usage, router software may be modi ed tote#mn a shared RIB
instead of a FIB. We found the RIB is by far the largest source of meory usage in
both Quagga and XORP, incurring 99.3% of total memory usage. Mog on a shared
RIB would reduce this overhead by eliminating the need to store sede copies of
the RIB across router instances. Here, voting could be perforchecross multiple
routing daemons (e.g., multiple BGP processes within a single instandeQisco 10S)
to construct a single shared RIB. In addition to reducing memory age, ner-grained
diversity may speed reaction (by only cloning and restarting individugprocesses or
threads), and ner-grained control (during times of load, only mision-critical com-
ponents may be cloned to reduce resource usage). However,ecddvelopment may
become more challenging, since this approach relies on knowing whietite of code
are functionally equivalent. To address this, router software cdai be written to a
common API, to allow replication and composition of modules from di eent code

bases while sharing state.

Leveraging existing redundancy: Instead of running multiple instances in par-
allel, a router may be able to leverage redundant executions takindape at other

routers in the network. For example, networks often provision deindant network

51

equipment to protect against physical failures. For example, the RRP [5]] proto-
col allows multiple routers to act collectively as a single router. Our ahitecture is
amenable to leveraging physical redundancy, as the multiple instagg may be de-
ployed across the redundant router instances. In addition, all uters in the ISP
compute the sameegress sebf BGP routes that are \equal" according to the rst
few steps of the decision process that deal with BGP attributes!], 28]. To lever-
age this redundancy, it may be possible to extend our architectute support voting

across multiple router's egress sets.

2.7 Related Work

Software and data diversity has been widely applied in other areas cdmputing,
including increasing server reliability 3], improving resilience to worm propaga-
tion [80], building survivable Internet services 2], making systems secure against
vulnerabilities [39)], building survivable overlay networks 110, building fault tolerant
networked le systems B0, protecting private information [10¢, and recovering from
memory errors P0. Techniques have also been developed to minimize computational
overhead by eliminating redundant executions and redundant memyousage across
parallel instances 111, 56].

However as discussed in Sectidh1.3 routing software presents new challenges
for SDD (e.g., routers must react quickly to network changes, hawast con guration
spaces and execution paths, rely on distributed operations), agvas new opportu-
nities to customize SDD (routers have small dependence on pasttbig, can achieve
the same objectives in di erent ways, have well-de ned interfacgsWe address these
challenges and opportunities in our design. There has also been wstikdying router
bugs and their e ects [LO7, 74], and our design is inspired by these measurement

studies. Also, P7] used a graph-theoretic treatment to study the potential bents of

52

diversity across physical routers (as opposed to diversity within eouter). As work
dealing with miscon gurations |46, 47] and traditional fail-stop failures [L5, 78, 75, 58]
becomes deployed we envision router bugs will make up an increasingigni cant
roadblock in improving network availability.

Our work can be contrasted to techniques which attempt to prewe bugs by
formally verifying the code. These techniques are typically limited tonsall codebases,
and often require manual e orts to create models of program batior. For example,
with manual intervention, a small operating system kernel was forally veri ed [69)].
For routing, work has been done on languages to model protoc@Havior (e.g., [59]),
however the focus of this work is on algorithmic behaviors of the gaxol, as opposed
to other possible places where a bug can be introduced. In contrasur approach
leverages a small and low-complexity hypervisor, which we envisionitg possible to
formally verify.

Our design leverages router virtualization to maintain multiple diversenstances.
Router virtualization is an emerging trend gaining increased attentrg as well as
support in commercial routers. In addition, our design is complemtmy to use of
models of router behavior46, 47] and control-plane consistency checks (2, 83, as
these models/checks can be run in place of one or more of the routgtual instances.
Finally, systems such as MARE (Multiple Almost-Redundant Executios) [111] and
the Di erence Engine [6] focus on reducing overheads from replication. MARE runs
a single instruction stream most of the time, and only runs redundannstruction
streams when necessary. The Di erence Engine attains substaitsavings in mem-
ory usage across VMs, through use of sub-page level sharing amatore memory
compression. These techniques may be used to further reducerbeads of our de-

sign.

53

2.8 Summary

Implementation errors in routing software harm availability, securiy, and correctness
of network operation. In this chapter, we described how to imprevresilience of
networks to bugs by applying Software and Data Diversity (SDD) tehniques to router
design. Although these techniques have been widely used in othesas of computing,
applying them to routing introduces new challenges and opportunite which we
address in our design. This chapter takes an important rst stepawards addressing
these problems by demonstrating diverse replication is both viable @re ective in

building robust Internet routers. An implementation of our design lsows improved

robustness to router bugs with some tolerable additional delay.

54

Chapter 3

Decoupling the Logical IP-layer
Topology from the Physical
Topology with VROOM

3.1 Introduction

In the previous chapter we presented the bug-tolerant router ich masks bugs in
router software. While providing a more reliable router, the bug-terant router is still
plagued by the same problems of today's routers { that the distritted route selection
process causes disruption and that there is considerable humarod in managing a
network. In this chapter, we target those two issues.

We focus on network management as it is widely recognized as one laé tmost
important challenges facing the Internet. The cost of the peoplend systems that
manage a network typically exceeds the cost of the underlying nadand links; in
addition, most network outages are caused by operator errorather than equipment
failures [6g. From routine tasks such as planned maintenance to the less-fueqt

deployment of new protocols, network operators struggle to pridle seamless service

55

in the face of changes to the underlying network. Handling changedscult because
each change to the physical infrastructure requires a corresmbng modi cation to
the logical con guration of the routers|such as recon guring th e tunable parameters
in the routing protocols.

Logical refers to IP packet-forwarding functions, whilgphysicalrefers to the phys-
ical router equipment (such as line cards and the CPU) that enablékese functions.
Any inconsistency between the logical and physical con gurationsan lead to unex-
pected reachability or performance problems. Furthermore, bagse of today's tight
coupling between the physical and logical topologies, sometimes ladfilayer changes
are used purely as @ool to handle physical changes more gracefully. A classic exam-
ple is increasing the link weights in Interior Gateway Protocols to \cdsout" a router
in advance of planned maintenance{]. In this case, a change in the logical topology
is not the goal, rather it is the indirect tool available to achieve the task ahand, and
it does so with potential negative side e ects.

In this chapter, we argue that breaking the tight coupling betweemphysical and
logical con gurations can provide asingle general abstraction that simpli es network
management. Speci cally, we propose VROOM (Virtual ROuters Ontte Move), a
new network-management primitive where virtual routers can mavfreely from one
physical router to another. In VROOM, physical routers merely arve as the carrier
substrate on which the actual virtual routers operate. VROOM an migrate a virtual
router to a di erent physical router without disrupting the ow of tra c or changing
the logical topology, obviating the need to recon gure the virtualrouters while also
avoiding routing-protocol convergence delays. For example, if &ysical router must
undergo planned maintenance, the virtual routers could move (irdsance) to another
physical router in the same Point-of-Presence (PoP). In additignedge routers can
move from one location to another by virtually re-homing the links the.connect to

neighboring domains.

56

Realizing these objectives presents several challenges: nfigratable routers to
make a (virtual) router migratable, its \router" functionality must be separable from
the physical equipment on which it runs; (ii)yminimal outages: to avoid disrupting
user tra c or triggering routing protocol reconvergence, the nigration should cause no
or minimal packet loss; (iii) migratable links: to keep the IP-layer topology intact, the
links attached to a migrating router must \follow" it to its new location. Fortunately,
the third challenge is addressed by recent advances in transpdater technologies, as
discussed in Sectior3.2 Our goal, then, is to migrate router functionality from one
piece of equipment to another without disrupting the IP-layer toptogy or the data
tra c it carries, and without requiring router recon guration.

On the surface, virtual router migration might seem like a straighforward ex-
tention to existing virtual machine migration techniques. This would inolve copying
the virtual router image (including routing-protocol binaries, corguration les and
data-plane state) to the new physical router and freezing the nming processes before
copying them as well. The processes and data-plane state wouldnHge restored on
the new physical router and associated with the migrated links. Hawer, the de-
lays in completing all of these steps would cause unacceptable digraps for both
the data tra c and the routing protocols. For virtual router migr ation to be viable
in practice, packet forwarding should not be interrupted, not eve temporarily. In
contrast, the control plane can tolerate brief disruptions, sinceouting protocols have
their own retransmission mechansisms. Still, the control plane musgstart quickly
at the new location to avoid losing protocol adjacencies with othemouters and to
minimize delay in responding to unplanned network events.

In VROOM, we minimize disruption by leveraging the separation of the an-
trol and data planes in modern routers. We introduce alata-plane hypervisoja
migration-aware interface between the control and data plane3his uni ed interface

allows us to support migration between physical routers with di eret data-plane

57

technologies. VROOM migrates only the control plane, while continughto forward
tra c through the old data plane. The control plane can start running at the new
location, and populate the new data plane while updating the old datalgne in par-
allel. During the transition period, the old router redirects routingprotocol tra c to
the new location. Once the data plane is fully populated at the new lotan, link
migration can begin. The two data planes operate simultaneously farperiod of time
to facilitate asynchronous migration of the links.

To demonstrate the generality of our data-plane hypervisor, wer@sent two pro-
totype VROOM routers|one with a software data plane (in the Linux kernel) and
the other with a hardware data plane (using a NetFPGA card). Each virtual
router runs the Quagga routing suite §] in an OpenVZ container §]. Our software
extensions consist of three main modules that (i) separate the ¥aarding tables from
the container contexts, (ii) push the forwarding-table entries geerated by Quagga
into the separate data plane, and (iii) dynamically bind the virtual intefaces and
forwarding tables. Our system supports seamless live migration oirtual routers
between the two data-plane platforms. Our experiments show thairtual router
migration causes no packet loss or delay when the hardware datamsais used, and
at most a few seconds of delay in processing control-plane message

The remainder of the chapter is structured as follows. Sectidh2 presents back-
ground on exible transport networks and an overview of related ark. Next, Sec-
tion 3.3 discusses how router migration would simplify existing network managent
tasks, such as planned maintenance and service deployment, whilsoaaddressing
emerging challenges like power management. We present the VROOKatecture
in Section 3.4, followed by the implementation and evaluation in Section3.5and 3.6,
respectively. We brie y discuss our on-going work on migration sctieling in Sec-

tion 3.7 and conclude in SectiorB8.8.

58

"#$%E&()& &k, +-.% 1"#$%&'6
1&+012"&%$'3%%$4"&5

- /%\;

—&s
HB9687

82%$9:+.'$&+012"&%$'149%:;

<+="&"*&+,,+-.%'$&+012"&$'0%$4"&5'

"H$%&(J+:596$>+4+8&% '"#$%8.6
/&+012"&%'3%$4"&5

S éﬁa% 1"#$%&'
= 3 _ooSg I"#$%&'7
S > Q
A
S
A
?)&"#$%& %% 0
7yarHsh § =
\%cg

<-=)+:506$>+4+8%'$&+012"&$'0%$4" &5’

Figure 3.1: Link migration in the transport networks

3.2 Background

One of the fundamental requirements of VROOM is \link migration”, i.e, the links
of a virtual router should \follow" its migration from one physical nade to another.

This is made possible by emerging transport network technologies.eWfrie y describe

these technologies before giving an overview of related work.

3.2.1 Flexible Link Migration

In its most basic form, a link at the IP layer corresponds to a direct fysical link

(e.g., a cable), making link migration hard as it involves physically moving lknend

59

point(s). However, in practice, what appears as a direct link at theéP layer of-
ten corresponds to a series of connections through di erent m&trk elements at the
transport layer. For example, in today's ISP backbones, \direct'physical links are
typically realized by optical transport networks, where an IP link caresponds to a cir-
cuit traversing multiple optical switches B4, 104. Recent advances irprogrammable
transport networks [34, 14] allow physical links between routers to be dynamically
set up and torn down. For example, as shown in Figurd.1l(a), the link between
physical routers A and B is switched through a programmable trapsrt network. By
signaling the transport network, the same physical port on routeA can be connected
to router C after an optical path switch-over. Such path switclever at the trans-
port layer can be done e ciently, e.g., sub-nanosecond optical switing time has
been reported $(). Furthermore, such switching can be performed across a widesar
network of transport switches, which enables inter-POP link migraon.

In addition to core links within an ISP, we also want to migrateaccess linkscon-
necting customer edge (CE) routers and provider edge (PE) raens, where only the
PE end of the links are under the ISP's control. Historically, access ka correspond
to a path in the underlying access network, such as a T1 circuit in a tieadivision
multiplexing (TDM) access network. In such cases, the migration ain access link
can be accomplished in similar fashion to the mechanism shown in Figud(a), by
switching to a new circuit at the switch directly connected to the CE outer. How-
ever, in traditional circuit-switched access networks, a dedicatephysical port on
a PE router is required to terminate each TDM circuit. Therefore, ifall ports on a
physical PE router are in use, it will not be able to accommodate moxértual routers.
Fortunately, as Ethernet emerges as an economical and exible afhative to legacy
TDM services, access networks are evolving packet-awaretransport networks [L7].
This trend o ers important bene ts for VROOM by eliminating the need for per-

customer physical ports on PE routers. In a packet-aware assnetwork (e.g., a

60

virtual private LAN service access network), each customer a&ss port is associated
with a label, or a \pseudo wire" 6], which allows a PE router to support multiple
logical access links on the same physical port. The migration of a pde-wire access
link involves establishing a new pseudo wire and switching to it at the muservice
switch [17] adjacent to the CE.

Unlike conventional ISP networks, some networks are realized agedays on top
of other ISPs' networks. Examples include commercial \Carrier $yporting Carrier
(CSCO)" networks [3€], and VINI, a research virtual network infrastructure overlaid
on top of National Lambda Rail and Internet2 [.0J. In such cases, a single-hop link
in the overlay network is actually a multi-hop path in the underlying netvork, which
can be an MPLS VPN (e.g., CSC) or an IP network (e.g., VINI). Link migation
in an MPLS transport network involves switching over to a newly estaished label
switched path (LSP). Link migration in an IP network can be done by ltanging the

IP address of the tunnel end point.

3.2.2 Related Work

VROOM's motivation is similar, in part, to that of the RouterFarm work [14], namely,
to reduce the impact of planned maintenance by migrating router fictionality from
one place in the network to another. However, RouterFarm essily performs a
\cold restart”, compared to VROOM's live (\hot") migration. Speci cally, in Router-
Farm router migration is realized by re-instantiating a router instage at the new lo-
cation, which not only requires router recon guration, but also intoduces inevitable
downtime in both the control and data planes. In VROOM, on the otler hand, we
perform live router migration without recon guration or discernible disruption.

Recent advances in virtual machine technologies and their live migrah capa-
bilities [38, 5] have been leveraged in server-management tools, primarily in data

centers. For example, SandpiperLDq automatically migrates virtual servers across

61

a pool of physical servers to alleviate hotspots. Usher/ allows administrators to
express a variety of policies for managing clusters of virtual serse Remus {.0] uses
asynchronous virtual machine replication to provide high availability & server in the
face of hardware failures. In contrast, VROOM focuses on levegiiag live migration
techniques to simplify management in the networking domain.

Network virtualization has been proposed in various contexts. Elgrwork includes
the \switchlets" concept, in which ATM switches are partitioned to enable dynamic
creation of virtual networks P9. More recently, the CABO architecture proposes to
use virtualization as a means to enable multiple service providers toask the same
physical infrastructure [1&]. Outside the research community, router virtualization
has already become available in several forms in commercial rout¢ts, 61]. In
VROOM, we take an additional step not only to virtualize the router tinctionality,
but also to decouple the virtualized router from its physical host ah enable it to
migrate.

VROOM also relates to recent work on minimizing transient routing disiptions
during planned maintenance. A measurement study of a large ISPcsted that more
than half of routing changes were planned in advancé. Network operators can
limit the disruption by recon guring the routing protocols to direct tra c away from
the equipment undergoing maintenanceép, 57). In addition, extensions to the routing
protocols can allow a router to continue forwarding packets in theada plane while
reinstalling or rebooting the control-plane softwared3, 37]. However, these techniques
require changes to the logical con guration or the routing softwa, respectively. In
contrast, VROOM hides the e ects of physical topology changes ithe rst place,
obviating the need for point solutions that increase system compigxwhile enabling

new network-management capabilities, as discussed in the nexttgat

62

3.3 Network Management Tasks

In this section, we present three case studies of the applicatiofsW\ROOM. We show
that the separation between physical and logical, and the routerigration capability
enabled by VROOM, can greatly simplify existing network-managemertasks. It can
also provide network-management solutions to other emerging demges. We explain
why the existing solutions (in the rst two examples) are not satisfetory and outline

the VROOM approach to addressing the same problems.

3.3.1 Planned Maintenance

Planned maintenance is a hidden fact of life in every network. Howeydhe state-
of-the-art practices are still unsatisfactory. For example, stfare upgrades today
still require rebooting the router and re-synchronizing routing potocol states from
neighbors (e.g., BGP routes), which can lead to outages of 10-15 otes [L4]. Dif-
ferent solutions have been proposed to reduce the impact of plathmaintenance
on network tra c, such as \costing out" the equipment in advance Another exam-
ple is the RouterFarm approach of removing the static binding betvem customers
and access routers to reduce service disruption time while perfong maintenance
on access routers1f]. However, we argue that neither solution is satisfactory, since
maintenance ofphysical routers still requires changes to théogical network topology,
and requires (often human interactive) recon gurations and roling protocol recon-
vergence. This usually implies more con guration errorsSf] and increased network
instability.

We performed an analysis of planned-maintenance events condecttin a Tier-1
ISP backbone over a one-week period. Due to space limitations, wdyomention the
high-level results that are pertinent to VROOM here. Our analysis idicates that,

among all the planned-maintenance events that have undesirabletwork impact

63

today (e.g., routing protocol reconvergence or data-plane digtion), 70% could be
conducted without any network impact if VROOM were used. (This nmber assumes
migration between routers with control planes of like kind. With moresophisticated
migration strategies, e.g., where a \control-plane hypervisor" allosvmigration be-
tween routers with di erent control plane implementations, the number increases to
90%.) These promising numbers result from the fact that most plama-maintenance
events were hardware related and, as such, did not intend to makay longer-term
changes to the logical-layer con gurations.

To perform planned maintenance tasks in a VROOM-enabled netwqgrketwork
administrators can simply migrate all the virtual routers running ona physical router
to other physical routers before doing maintenance and migrateém back afterwards
as needed, without ever needing to recon gure any routing protols or worry about

tra c disruption or protocol reconvergence.

3.3.2 Service Deployment and Evolution

Deploying new services, like IPv6 or IPTV, is the life-blood of any ISPret, ISPs
must exercise caution when deploying these new services. Firsteyhmust ensure
that the new services do not adversely impact existing services.c8ed, the necessary
support systems need to be in place before services can be priypsupported. (Sup-
port systems include con guration management, service monitoig, provisioning, and
billing.) Hence, ISPs usually start with a small trial running in a controllel environ-
ment on dedicated equipment, supporting a few early-adopter dosers. However,
this leads to a \success disaster" when the service warrants widgeployment. The
ISP wants to o er seamless service to its existing customers, andtyalso restructure
their test network, or move the service onto a larger network toesve a larger set of
customers. This \trial system success" dilemma is hard to resolvetife logical notion

of a \network node" remains bound to a speci ¢physical router.

64

VROOM provides a simple solution by enabling network operators to éely mi-
grate virtual routers from the trial system to the operational lackbone. Rather than
shutting down the trial service, the ISP can continue supportinghe early-adopter
customers while continuously growing the trial system, attractingew customers, and
eventually seamlessly migrating the entire service to the operatidnaetwork.

ISPs usually deploy such service-oriented routers as close to theirstomers as
possible, in order to avoid backhaul tra c. However, as the servi&s grow, the geo-
graphical distribution of customers may change over time. With VROM, ISPs can

easily reallocate the routers to adapt to new customer demands.

3.3.3 Power Savings

VROOM not only provides simple solutions to conventional network-anagement
tasks, but also enables new solutions to emerging challenges suclp@ser manage-
ment. It was reported that in 2000 the total power consumption fothe estimated
3.26 million routers in the U.S. was about 1.1 TWh (Tera-Watt hours) §1]. This
number was expected to grow to 1.9 to 2.4TWh in the year 2005 by #e di erent
projection models $1], which translates into an annual cost of about 178-225 million
dollars [31]. These numbers do not include the power consumption of the reqenr
cooling systems.

Although designing energy-e cient equipment is clearly an importantpart of the
solution [57], we believe that network operators can alsmmanagea network in a
more power-e cient manner. Previous studies have reported thdnternet tra ¢ has
a consistent diurnal pattern caused by human interactive netwéractivities. How-
ever, today's routers are surprisingly power-insensitive to the drc loads they are
handling|an idle router consumes over 90% of the power it requires faen working at
maximum capacity [31]. We argue that, with VROOM, the variations in daily tra c

volume can be exploited to reduce power consumption. Speci callyhe size of the

65

physical network can be expanded and shrunk according to tra demand, by hiber-
nating or powering down the routers that are not needed. The beway to do this
today would be to use the \cost-out/cost-in" approach, which ineitably introduces
con guration overhead and performance disruptions due to protol reconvergence.
VROOM provides a cleaner solution: as the network tra c volume deases
at night, virtual routers can be migrated to a smaller set of physidarouters and
the unneeded physical routers can be shut down or put into hibextion to save
power. When the tra c starts to increase, physical routers carbe brought up again
and virtual routers can be migrated back accordingly. With VROOM the IP-layer
topology stays intact during the migrations, so that power savingdo not come at the
price of user tra c disruption, recon guration overhead or protocol reconvergence.
Our analysis of data tra c volumes in a Tier-1 ISP backbone suggestthat, even
if only migrating virtual routers within the same POP while keeping the ame link
utilization rate, applying the above VROOM power management appiaxh could save
18%-25% of the power required to run the routers in the networkAs discussed in
Section3.7, allowing migration across di erent POPs could result in more substdial

power savings.

3.4 VROOM Architecture

In this section, we present the VROOM architecture. We rst desgbe the three
building-blocks that make virtual router migration possible|router virtualization,
control and data plane separation, and dynamic interface binding/\e then present
the VROOM router migration process. Unlike regular servers, mode routers typi-
cally have physically separate control and data planes. Leveragitiys unique prop-
erty, we introduce adata-plane hypervisorbetween the control and data planes that

enables virtual routers to migrate across di erent data-plane ptéorms. We describe

66

IHS%& () +,-./

o AR VAN | SRV S R A (O
HBH0 | SO
TS

2-) 2 2')
0,1$-/-. I('3. (3. I('3
1 y4
l | <8\ _—7 |
8= 2->7(3)#2.1@%S$+ B 4998 ()%3-./5'&.

89: 2#3'4%&)%3-./5'&.)1%36%37 [] A33.()%3-./5'&.

Figure 3.2: The architecture of a VROOM router

Figure 3.3: VROOM's novel router migration mechanisms (the times ahe bottom
of the sub gures correspond to those in Figur8.4)

in detail the three migration techniques that minimize control-plane dwntime and
eliminate data-plane disruption|data-plane cloning, remote contrd plane, and dou-

ble data planes.

3.4.1 Making Virtual Routers Migratable

Figure 3.2 shows the architecture of a VROOM router that supports virtualrouter
migration. It has three important features that make migration p@sible: router
virtualization, control and data plane separation, and dynamic intdace binding, all

of which already exist in some form in today's high-end commercial rtass.

67

Router Virtualization: A VROOM router partitions the resources of a physical
router to support multiple virtual router instances. Each virtual router runs indepen-
dently with its own control plane (e.g., applications, con gurations,routing protocol
instances and routing information base (RIB)) and data plane (e.ginterfaces and
forwarding information base (FIB)). Suchrouter virtualization support is already
available in some commercial routers3[, 61]. The isolation between virtual routers
makes it possible to migrate one virtual router without a ecting theothers.

Control and Data Plane Separation: In a VROOM router, the control and data
planes run inseparateenvironments. As shown in Figure3.2, the control planes of
virtual routers are hosted in separate \containers" (or \virtud environments"), while
their data planes reside in thesubstrate where each data plane is kept in separate
data structures with its own state information, such as FIB entrie and access control
lists (ACLs). Similar separation of control and data planes alreadyxests in today's
commercial routers, with control plane running on the CPU(s) andnain memory,
while the data plane runs on line cards that have their own computingqwer (for
packet forwarding) and memory (to hold the FIBs). This separatio allows VROOM
to migrate the control and data planes of a virtual router sepataly (as discussed in
Section3.4.2and 3.4.2.

Dynamic Interface Binding: To enable router migration and link migration, a
VROOM router should be able todynamically set up and change the binding between
a virtual router's FIB and its substrate interfaces(which can be physical or tunnel
interfaces), as shown in Figure.2. Given the existing interface binding mechanism
in today's routers that maps interfaces with virtual routers, VRGDM only requires
two simple extensions. First, after a virtual router is migrated, tiis binding needs to
be re-established dynamically on the new physical router. This is essially the same
as if this virtual router were just instantiated on the physical roter. Second, link

migration in a packet-aware transport network involves changingunnel interfaces in

68

| | S | L,
[[[l [T
$9 $: $8 $; $7 $< g= $(%
“0gr2+ | "24+0"4% | = !%("$%+,"O$!"2+-2)0%<—|
2)0% 0%6+0"4% |

() sH00%2+/%S#- (2) 4)$)8-2)0%+2'00" !4:;:)2:/!"
PHSIOIZ () Yot ())LOLI0H+203+(*)$"0 -2)0%/

@ (%("1.+,"-+ (& @1%&,"-.
;&8@$)22&)04&,"-.+5,"0$!"2+-2)0%+4"60%' (%7

Figure 3.4: VROOM's router migration process

the router, as shown in Figure3.1 In this case, the router substrate needs to switch

the binding from the old tunnel interface to the new one on-the- Y.

3.4.2 Virtual Router Migration Process

Figures3.3and 3.4 illustrate the VROOM virtual router migration process. The rst
step in the process involves establishing tunnels between the s@uphysical router
A and destination physical router B of the migration (Figure3.3(a)). These tunnels
allow the control plane to send and receive routing messages aites migrated (steps
2 and 3) but before link migration (step 5) completes. They also allovhé migrated
control plane to keep its data plane on A up-to-date (Figure3.3(b)). Although the
control plane will experience a short period of downtime at the end step 3 (memory
copy), the data plane continues working during the entire migratiomprocess. In fact,
after step 4 (data-plane cloning), the data planes on both A and Baa forward tra c
simultaneously (Figure3.3(c)). With these double data planes, links can be migrated
from A to B in an asynchronous fashion (Figur&.3(c) and (d)), after which the data
plane on A can be disabled (Figur&.4). We now describe the migration mechanisms

in greater detail.

LIn the case of a programmable transport network, link migration happens inside the transport
network and is transparent to the routers.

69

Control-Plane Migration

Two things need to be taken care of when migrating the control plan the router
image such as routing-protocol binaries and network con guration Is, and the
memory, which includes the states of all the running processes. When copy the
router image and memory, it is desirable to minimize the total migratioriime, and
more importantly, to minimize the control-plane downtime (i.e., the timebetween
when the control plane is check-pointed on the source node andewhit is restored on
the destination node). This is because, although routing protocatan usually tolerate
a brief network glitch using retransmission (e.g., BGP uses TCP retnamission, while
OSPF uses its own reliable retransmission mechanism), a long contpidne outage
can break protocol adjacencies and cause protocols to recagee

We now describe how VROOM leverages virtual machine (VM) migratiotech-
niques to migrate the control plane in steps 2 (router-image copy@nd 3 (memory
copy) of its migration process, as shown in Figurg.4.

Unlike general-purpose VMs that can potentially be running complele di erent
programs, virtual routers from the same vendor run the same gually small) set
of programs (e.g., routing protocol suites). VROOM assumes thdhe same set of
binaries are already available on every physical router. Before a tval router is
migrated, the binaries are locally copied to its le system on the destation node.
Therefore, only the router con guration les need to be copied @r the network,
reducing the total migration time (as local-copy is usually faster thanetwork-copy).

The simplest way to migrate the memory of a virtual router is to chdcpoint the
router, copy the memory pages to the destination, and restoréd router, a.k.a. stall-
and-copy [5]. This approach leads to downtime that is proportional to the memagr
size of the router. A better approach is to add an iterativgpre-copy phase before
the nal stall-and-copy [3§], as shown in Figure3.4. All pages are transferred in
the rst round of the pre-copy phase, and in the following roundspnly pages that

70

were modi ed during the previous round are transferred. This preopy technique
reduces the number of pages that need to be transfered in thealstand-copy phase,
reducing the control plane downtime of the virtual router (i.e., thecontrol plane is

only \frozen" between t3 and t4 in Figure 3.4).

Data-Plane Cloning

The control-plane migration described above could be extended tagrate the data
plane, i.e., copy all data-plane states over to the new physical nodelowever, this
approach has two drawbacks. First, copying the data-plane sed (e.g., FIB and
ACLSs) is unnecessary and wasteful, because the information thigtused to generate
these states (e.g., RIB and con guration les) is already available intte control
plane. Second, copying the data-plane state directly can be di culif the source and
destination routers use di erent data-plane technologies. For exple, some routers
may use TCAM (ternary content-addressable memory) in their dat planes, while
others may use regular SRAM. As a result, the data structures &t hold the state
may be di erent.

VROOM formalizes the interface between the control and data plas by introduc-
ing a data-plane hypervisarwhich allows a migrated control plane to re-instantiate
the data plane on the new platform, a process we calata-plane cloning . That s,
only the control plane of the router is actually migrated. Once theantrol plane is
migrated to the new physical router, itclonesits original data plane by repopulating
the FIB using its RIB and reinstalling ACLs and other data-plane sta¢s through the
data-plane hypervisor (as shown in Figur&.2). The data-plane hypervisor provides

a uni ed interface to the control plane that hides the heterogenty of the underly-

2Data dynamically collected in the old data plane (such as NetFlow) can le copied and merged
with the new one. Other path-speci c statistics (such as queue legth) will be reset as the previous
results are no longer meaningful once the physical path changes.

71

ing data-plane implementations, enabling virtual routers to migratdetween di erent

types of data planes.

Remote Control Plane

As shown in Figure3.3(b), after VR1's control plane is migrated from A to B, the
natural next steps are to repopulate (clone) the data plane on Bnd then migrate

the links from A to B. Unfortunately, the creation of the new data pane can not
be done instantaneously, primarily due to the time it takes to install BB entries.

Installing one FIB entry typically takes between one hundred and aefv hundred
microseconds 43; therefore, installing the full Internet BGP routing table (about

250k routes) could take over 20 seconds. During this period of tima@though data
tra c can still be forwarded by the old data plane on A, all the routing instances in
VR1's control plane can no longer send or receive routing messagéke longer the
control plane remains unreachable, the more likely it will lose its protml adjacencies
with its neighbors.

To overcome this dilemma, A's substrate starts redirecting all theauting messages
destined to VRL1 to B at the end of the control-plane migration (time 4 in Figure 3.4).
This is done by establishing a tunnel between A and B for each of VR1ssibstrate
interfaces. To avoid introducing any additional downtime in the conbl plane, these
tunnels are established before the control-plane migration, as sftoin Figure 3.3(a).
With this redirection mechanism, VR1's control plane not only can exmange routing
messages with its neighbors, it can also act as themote control plane for its old

data plane on A and continue to update the old FIB when routing chages happen.

Double Data Planes

In theory, at the end of the data-plane cloning step, VR1 can switcfrom the old

data plane on A to the new one on B by migrating all its links from A to B siraltane-

72

ously. However, performing accurate synchronous link migratiorcenss all the links
is challenging, and could signi cantly increase the complexity of the stem (because
of the need to implement a synchronization mechanism).

Fortunately, because VR1 haswo data planes ready to forward tra c at the end
of the data-plane cloning step (Figure3.4), the migration of its links does not need to
happen all at once. Instead, each link can be migrated independeoftthe others, in
an asynchronous fashion, as shown in Figu&3(c) and (d). First, router B creates a
new outgoinglink to each of VR1's neighbors, while all data tra ¢ continues to ow
through router A. Then, the incoming links can be safely migrated asynchronously,
with some tra c starting to ow through router B while the remaining tra c still
ows through router A. Finally, once all of VR1's links are migrated torouter B, the
old data plane and outgoing links on A, as well as the temporary tunfsg can be

safely removed.

3.5 Prototype Implementation

In this section, we present the implementation of two VROOM prototpe routers.
The rst is built on commodity PC hardware and the Linux-based virtualization
solution OpenVZ []. The second is built using the same software but utilizing the
NetFPGA platform [79 as the hardware data plane. We believe the design presented
here is readily applicable to commercial routers, which typically havené same clean
separation between the control and data planes.

Our prototype implementation consists of three new programs, akown in Figure
3.5. These includevirtd , to enable packet forwarding outside of the virtual envi-
ronment (control and data plane separation)shadowd to enable each VE to install
routes into the FIB; and bindd (data plane cloning), to provide the bindings between

the physical interfaces and the virtual interfaces and FIB of eacVE (data-plane

73

e | 0 i :
P &96((% ! | | ;
T | [+ |[9es2 |@@
R — N 2 F |
- Lo Jilrws | | i i
L[esroear 019+8), %" L S - |
sownsans | |

[U SN

.16

7)8"&#")&9'$)":); |

3)8. |

=)>?@A | NCwa. N
Ji

Figure 3.5: The design of the VROOM prototype routers (with two tpes of data
planes)

hypervisor). We rst discuss the mechanisms that enable virtualauter migration
in our prototypes and then present the additional mechanisms we piemented that

realize the migration.

3.5.1 Enabling Virtual Router Migration

We chose to use OpenVZj], a Linux-based OS-level virtualization solution, as the
virtualization environment for our prototypes. As running multiple gperating systems
for di erent virtual routers is unnecessary, the lighter-weight Cs-level virtualization
is better suited to our need than other virtualization techniques, u&ch as full virtu-
alization and para-virtualization. In OpenVZ, multiple virtual environments (VES)
running on the same host share the same kernel, but have separairtualized re-
sources such as name spaces, process trees, devices, andrkestacks. OpenVZ

also provides live migration capability for running VES.

3The current OpenVZ migration function uses the simple \stall-and-copy" mechanism for memory
migration. Including a \pre-copy" stage [3€] in the process will reduce the migration downtime.

74

In the rest of this subsection, we describe in a top-down order thieree compo-
nents of our two prototypes that enable virtual router migration We rst present
the mechanism that separates the control and data planes, antien describe the
data-plane hypervisor that allows the control planes to update & FIBs in the shared
data plane. Finally, we describe the mechanisms that dynamically bindhé interfaces

with the FIBs and set up the data path.

Control and Data Plane Separation

To mimic the control and data plane separation provided in commerdiaouters, we
move the FIBs out of the VEs and place them in a shared but virtualizkdata plane,
as shown in Figure3.5. This means that packet forwarding no longer happens within
the context of each VE, so it is una ected when the VE is migrated.

As previously mentioned, we have implemented two prototypes withidrent
types of data planes|a software-based data plane (SD) and a hdmware-based data
plane (HD). In the SD prototype router, the data plane resides intte root context
(or \VEQ") of the system and uses the Linux kernel for packet fvarding. Since the
Linux kernel (2.6.18) supports 256 separate routing tables, theDSouter virtualizes
its data plane by associating each VE with a di erent kernel routing able as its FIB.

In the HD router implementation, we use the NetFPGA platform congured with
the reference router provided by Stanford/[F]. The NetFPGA card is a 4-port gigabit
ethernet PCI card with a Virtex 2-Pro FPGA on it. With the NetFPGA a s the data
plane, packet forwarding in the HD router does not use the host @R thus more
closely resembling commercial router architectures. The NetFPG#eference router
does not currently support virtualization. As a result, our HD rouer implementation

is currently limited to only one virtual router per physical node.

75

Data-Plane Hypervisor

As explained in Sectior3.4, VROOM extends the standard control plane/data plane
interface to a migration-aware data-plane hypervisor. Our protgpe presents a rudi-
mentary data-plane hypervisor implementation which only support$-IB updates.
(A full- edged data-plane hypervisor would also allow the con guraion of other data
plane states.) We implemented thevirtd program as the data-plane hypervisor.
virtd runs in the VEO and provides an interface for virtual routers to inll/remove
routes in the shared data plane, as shown in Figur@5. We also implemented the
shadowdprogram that runs inside each VE and pushes route updates frorne control
plane to the FIB through virtd .

We run the Quagga routing software suited] as the control plane inside each VE.
Quagga supports many routing protocols, including BGP and OSPFnladdition to
the included protocols, Quagga provides an interface @ebra, its routing manager,
to allow the addition of new protocol daemons. We made use of this @rface to
implement shadowdas a client ofzebra. zebra provides clients with both the ability
to notify zebra of route changes and to be noti ed of route changes. Ashadowd
is not a routing protocol but simply a shadowing daemon, it uses onlyhé route
redistribution capability. Through this interface, shadowdis noti ed of any changes
in the RIB and immediately mirrors them to virtd using remote procedure calls
(RPCs). Each shadowdinstance is con gured with a unique ID (e.g., the ID of the
virtual router), which is included in every message it sends tairtd . Based on this
ID, virtd can correctly install/remove routes in the corresponding FIB uporeceiving
updates from ashadowdinstance. In the SD prototype, this involves using the Linux
iproute2 utility to set a routing table entry. In the HD prototype, this involve s using

the device driver to write to registers in the NetFPGA.

76

Dynamic Interface Binding

With the separation of control and data planes, and the sharing dhe same data
plane among multiple virtual routers, the data path of each virtualrouter must be
set up properly to ensure that (i) data packets can be forwardedccording to the
right FIB, and (ii) routing messages can be delivered to the right cdrol plane.

We implemented thebindd program that meets these requirements by providing
two main functions. The rst is to set up the mapping between a virt@al router's
substrate interfaces and its FIB after the virtual router is instatiated or migrated,
to ensure correct packet forwarding. (Note that a virtual rouér's substrate interface
could be either a dedicated physical interface or a tunnel interfa¢hat shares the same
physical interface with other tunnels.) In the SD prototype,bindd establishes this
binding by using the routing policy management function (i.e., \ip rule”)provided by
the Linux iproute2 utility. As previously mentioned, the HD prototype is currently
limited to a single table. Once NetFPGA supports virtualization, a mecanism similar
to the \ip rule” function can be used to bind the interfaces with the HBs.

The second function ofbindd is to bind the substrate interfaces with the vir-
tual interfaces of the control plane. In both prototypes, this mding is achieved by
connecting each pair of substrate and virtual interfaces to a dirent bridge using
the Linux brctl utility. In the HD prototype, each of the four physical ports on the
NetFPGA is presented to Linux as a separate physical interfacep packets destined
to the control plane of a local VE are passed from the NetFPGA toihux through

the corresponding interface.

3.5.2 Realizing Virtual Router Migration

The above mechanisms set the foundation for VROOM virtual routemigration in the
OpenVZ environment. We now describe the implementations of dafdane cloning,

remote control plane, and double data planes.
77

Although migration is transparent to the routing processes runnip in the VE,
shadowdneeds to be noti ed at the end of the control plane migration in ordeto
start the \data plane cloning”. We implemented a function inshadowdthat, when
called, triggersshadowdto requestzebra to resend all the routes and then push them
down to virtd to repopulate the FIB. Note that virtd runs on a xed (private) IP
address and a xed port on each physical node. Therefore, afta virtual router
is migrated to a new physical node, the route updates sent by ighadowdcan be
seamlessly routed to the locabirtd instance on the new node.

To enable a migrated control plane to continue updating the old FIBi(e., to act
as a \remote control plane"), we implemented irvirtd the ability to forward route
updates to anothervirtd instance using the same RPC mechanism that is used by
shadowd As soon as virtual router VR1 is migrated from node A to node B, th
migration script noti es the virtd instance on B of A's IP address and VR1's ID. B's
virtd , besides updating the new FIB, starts forwarding the route updas from VR1's
control plane to A, whosevirtd then updates VR1's old FIB. After all of VR1's links
are migrated, the old data plane is no longer used, so Biatd is noti ed to stop
forwarding updates. With B'svirtd updating both the old and new FIBs of VR1
(i.e., the \double data planes"), the two data planes can forward peets during the
asynchronous link migration process.

Note that the data-plane hypervisor implementation makes the theontrol planes
unaware of the details of a particular underlying data plane. As asselt, migration
can occur between any combination of our HD and SD prototypes (i.sD to SD,

HD to HD, SD to HD, and HD to SD).

78

$&

$%& $(&

-#' -*#,
$)& $)& $)& $)&
+,&-./01.823.845617250$&0/&*#' +(,&*#'898:0$210;8<;7$.8456172.9&20&$)& +)1&=5$>&$%&E&EES &59&9752:3. BEIOBSICHHBRBLF$'85989752:3+@ &2

Figure 3.6: The diamond testbed and the experiment process

3.6 Evaluation

In this section, we evaluate the performance of VROOM using our S&hd HD proto-
type routers. We rst measure the performance of the basic fations of the migration
process individually, and then place a VROOM router in a network andvaluate the
e ect its migration has on the data and control planes. Speci callywe answer the
following two questions:

1. What is the impact of virtual router migration on data forwading? Our evalu-
ation shows that it is important to have bandwidth isolation between rigration tra ¢
and data tra c. With separate bandwidth, migration based on an HD router hasno
performance impact on data forwarding. Migration based on a SD uter introduces
minimal delay increase and no packet loss to data tra c.

2. What is the impact of virtual router migration on routing prdocols? Our
evaluation shows that a virtual router running only OSPF in an Abilengopology
network can support 1-second OSPRello-interval without losing protocol adjacencies
during migration. The same router loaded with an additional full Intenet BGP
routing table can support a minimal OSPFhello-interval of 2 seconds without losing

OSPF or BGP adjacencies.

3.6.1 Methodology

Our evaluation involved experiments conducted in the Emulab tesbgd4]. We pri-

marily used PC3000 machines as the physical nodes in our experingenthe PC3000

79

is an Intel Xeon 3.0 GHz 64-bit platform with 2GB RAM and ve Gigabit Ethernet
NICs. For the HD prototype, each physical node was additionally eipped with
a NetFPGA card. All nodes in our experiments were running an Oper#/patched
Linux kernel 2.6.18-0vz028stab049.1. For a few experiments weoalsed the lower
performance PC850 physical nodes, built on an Intel Pentium IHI®MHz platform
with 512MB RAM and ve 100Mbps Ethernet NICs.

We used three di erent testbed topologies in our experiments:
The diamond testbed: We use the 4-node diamond-topology testbed (Figui6)
to evaluate the performance of individual migration functions andhe impact of
migration on the data plane. The testbed has two di erent con guations, which have
the same type of machines as physical node nO and n2, but di er indghhardware
on node nl and n3. In theSD con guration, n1 and n3 are regular PCs on which
we install our SD prototype routers. In theHD con guration, n1 and n3 are PCs
each with a NetFPGA card, on which we install our HD prototype rougrs. In the
experiments, virtual router VR1 is migrated from nl to n3 throughink n1! n3.
The dumbbell testbed: We use a 6-node dumbbell-shaped testbed to study the
bandwidth contention between migration trac and data trac. In the testbed,
round-trip UDP data tra c is sent between a pair of nodes while a virtual router is
being migrated between another pair of nodes. The migration tra and data tra c
are forced to share the same physical link.
The Abilene testbed: We use a 12-node testbed (Figur@.7) to evaluate the impact
of migration on the control plane. It has a topology similar to the 11xode Abilene
network backbone [1]. The only di erence is that we add an additional physical node
(Chicago-2), to which the virtual router on Chicago-1 (V5) is migréed. Figure 3.7
shows the initial topology of the virtual network, where 11 virtualrouters (V1 to

V11) run on the 11 physical nodes (except Chicago-2) respectywe

80

Figure 3.7: The Abilene testbed

Figure 3.8: Virtual router memory-copy time with di erent numbers of routes
3.6.2 Performance of Migration Steps

In this subsection, we evaluate the performance of the two main mngion functions
of the prototypes|memory copy and FIB repopulation.

Memory copy: To evaluate memory copy time relative to the memory usage of the
virtual router, we load the ospfd in VR1 with di erent numbers of routes. Table 3.1
lists the respective memory dump le sizes of VR1. Figurg.8 shows the total time it
takes to complete the memory-copy step, including (1) suspendichp VR1 on nl, (2)
copy the dump le from nl to n3, (3) resume VR1 on n3, and (4) setputhe bridging

(interface binding) for VR1 on n3. We observe that as the numberf eoutes becomes

81

Table 3.1: The memory dump le size of virtual router with di erent numbers of
OSPF routes

[Routes || 0 [10k [100k | 200k | 300k [400k | 500k |
[Size (MB) [32] 24.2] 46.4 | 58.4 | 71.1 | 97.3 | 124.1]

Table 3.2: The FIB repopulating time of the SD and HD prototypes

Data plane type Software data plane (SD) Hardware data plane (HD)
Number of routes 100 | 1k [10k | 15k 100 | 1k [10k | 15k
FIB update time (sec) || 0.1946| 1.9318| 19.3996| 31.2113| 0.0008| 0.0074| 0.0738| 0.1106

Total time (sec) 0.2110| 2.0880| 20.9851| 33.8988| 0.0102| 0.0973| 0.9634| 1.4399

larger, the time it takes to copy the dump le becomes the dominatindactor of the
total memory copy time. We also note that when the memory usagesbomes large,
the bridging setup time also grows signi cantly. This is likely due to CPU antention
with the virtual router restoration process, which happens at ta same time.

FIB repopulation: We now measure the time it takes VR1 to repopulate the new
FIB on n3 after its migration. In this experiment, we con gure the vrtual router
with di erent numbers of static routes and measure the time it taks to install all the
routes into the FIB in the software or hardware data plane. Tabl&.2 compares the
FIB update time and total time for FIB repopulation. FIB update time is the time
virtd takes to install route entries into the FIB, while total time also incluces the
time for shadowdto send the routes tovirtd . Our results show that installing a FIB
entry into the NetFPGA hardware (7.4 microseconds) is over 250 ties faster than
installing a FIB entry into the Linux kernel routing table (1.94 millisecords). As can

be expected the update time increases linearly with the number ofutes.

3.6.3 Data Plane Impact

In this subsection, we evaluate the in uence router migration hasnodata tra c. We
run our tests in both the HD and SD cases and compare the resulté/e also study

the importance of having bandwidth isolation between the migrationrad data tra c.
82

Zero impact: HD router with separate migration bandwidth

We rst evaluate the data plane performance impact of migrating a ivtual router
from our HD prototype router. We con gure the HD testbed suchthat the migration
tra c from nl to n3 goes through the direct link n1! n3, eliminating any potential
bandwidth contention between the migration tra c and data trac .

We run the D-ITG trac generator [41] on nO and n2 to generate round-trip
UDP tra c. Our evaluation shows that, even with the maximum packe rate the D-
ITG tra c generator on n0O can handle (sending and receiving 64-kig UDP packets
at 91k packets/s), migrating the virtual router VR1 from nl to n3 (including the
control plane migration and link migration) does not have any perfonance impact
on the data tra c it is forwarding|there is no delay increase or pack et loss'. These
results are not surprising, as the packet forwarding is handled byhé NetFPGA,
whereas the migration is handled by the CPU. This experiment demanates that
hardware routers with separate migration bandwidth can migrateixtual routers with

zero impact on data tra c.

Minimal impact: SD router with separate migration bandwidt h

In the SD router case, CPU is the resource that could potentially lzeme scarce
during migration, because the control plane and data plane of a viral router share
the same CPU. We now study the case in which migration and packetrizarding
together saturate the CPU of the physical node. As with the HD geriments above,
we use link n1 n3 for the migration tra c to eliminate any bandwidth contention.

In order to create a CPU bottleneck on n1, we use PC3000 machir@s nO and
n2 and use lower performance PC850 machines on nl and n3. We nighR1 from

nl to n3 while sending round-trip UDP data tra ¢ between nodes nO ad n2. We

4We hard-wire the MAC addresses of adjacent interfaces on eachhgsical nodes to eliminate the
need for ARP request/response during link migration.

83

vary the packet rate of the data tra c from 1k to 30k packets/s and observe the
performance impact the data tra c experiences due to the migraon. (30k packets/s
is the maximum bi-directional packet rate a PC850 machine can handigithout
dropping packets.)

Somewhat surprisingly, the delay increase caused by the migration asly no-
ticeable when the packet rate is relatively low. When the UDP packetate is at 5k
packets/s, the control plane migration causes sporadic roundit delay increases up
to 3.7%. However, when the packet rate is higher (e.g., 25k packe)s the change in
delay during the migration is negligible € 0.4%).

This is because the packet forwarding is handled by kernel threadshereas the
OpenVZ migration is handled by user-level processes (e.gsh, rsync, etc.). Al-
though kernel threads have higher priority than user-level pr@sses in scheduling,
Linux has a mechanism that prevents user-level processes frotargng when the
packet rate is high. This explains the delay increase when migration is progress.
However, the higher the packet rate is, the more frequently theser-level migration
processes are interrupted, and more frequently the packet hdler is called. There-
fore, the higher the packet rate gets, the less additional delayetmigration processes
add to the packet forwarding. This explains why when the packet ta is 25k pack-
ets/s, the delay increase caused by migration becomes negligible.isThlso explains
why migration does not cause any packet drops in the experimentd=inally, our

experiments indicate that the link migration does not a ect forwardng delay.

Reserved migration bandwidth is important

In 3.6.3and 3.6.3 migration tra c is given its own link (i.e., has separate bandwidth).
Here we study the importance of this requirement and the perforamce implications

for data tra c if it is not met.

84

450

400

350 —_

300 r

250 r

200 r

Delay increase (%)

150 r

100

50

o1 == ‘ ‘ ‘
g% 600 700 800 900

Data traffic rate (Mbps)

Figure 3.9: Delay increase of the data trac, due to bandwidth congntion with
migration tra c

Table 3.3: Packet loss rate of the data tra c, with and without migration tra c

| Data trac rate (Mbps) || 500] 600 | 700 | 800 [900 |

Baseline (%) 0 0 0 0 | 0.09
w/ migration tra c (%) 0 0 | 0.04|0.14]| 0.29

We use the dumbbell testbed in this experiment, where migration tra and data
tra c share the same bottleneck link. We load theospfd of a virtual router with 250k
routes. We start the data tra c rate from 500 Mbps, and gradudly increase it to 900
Mbps. Because OpenVZ uses TCPs€p) for memory copy, the migration tra c only
receives the left-over bandwidth of the UDP data tra c. As the awilable bandwidth
decreases to below 300 Mbps, the migration time increases, whichrslates into a
longer control-plane downtime for the virtual router.

Figure 3.9 compares the delay increase of the data tra c at di erent rates.Both
the average delay and the delay jitter increase dramatically as theabdwidth con-
tention becomes severe. Tabl@.3 compares the packet loss rates of the data tra c
at di erent rates, with and without migration tra c. Not surprising ly, bandwidth
contention (i.e., data tra c rate 700 Mbps) causes data packet loss. The above

results indicate that in order to minimize the control-plane downtime bthe virtual

85

router, and to eliminate the performance impact to data tra c, operators should

provide separate bandwidth for the migration tra c.

3.6.4 Control Plane Impact

In this subsection, we investigate the control plane dynamics intduced by router
migration, especially how migration a ects the protocol adjacencge We assume a
backbone network running MPLS, in which its edge routers run OSPEnd BGP,
while its core routers run only OSPF. Our results show that, with defult timers,
protocol adjacencies of both OSPF and BGP are kept intact, and anost one OSPF

LSA retransmission is needed in the worst case.

Core Router Migration

We con gure virtual routers VR1, VR6, VR8 and VR10 on the Abilenetestbed
(Figure 3.7) as edge routers, and the remaining virtual routers as core rars. By
migrating VR5 from physical hode Chicago-1 to Chicago-2, we obserthe impact of
migrating a core router on OSPF dynamics.

No events during migration: We rst look at the case in which there are no
network events during the migration. Our experiment results showhat the control-

plane downtime of VRS is between 0.924 and 1.008 seconds, with anrage of 0.972
seconds over 10 runs.

We start with the default OSPF timers of Cisco routers: hello-interval of 10
seconds andlead-interval of 40 seconds. We then reduce theello-interval to 5, 2,
and 1 second in subsequent runs, while keeping tbead-interval equal to four times
the hello-interval We nd that the OSPF adjacencies between the migrating VR5
and its neighbors (VR4 and VR6) stay up in all cases. Even in the moséstrictive
1-secondhello-interval case, at most one OSPF hello message is lost and VR5 comes
back up on Chicago-2 before its neighbors' dead timers expire.

86

Events happen during migration: We then investigate the case in which there are
events during the migration and the migrating router VR5 misses theSAs triggered
by the events. We trigger new LSAs by apping the link between VR2rd VR3. We
observe that VR5 misses an LSA when the LSA is generated during ¥R 1-second
downtime. In such a case, VR5 gets a retransmission of the missin§A.5 seconds
later, which is the default LSA retransmit-interval.

We then reduce the LSAretransmit-interval from 5 seconds to 1 second, in order
to reduce the time that VR5 may have a stale view of the network. T change
brings down the maximum interval between the occurrence of a linkap and VR5's
reception of the resulting LSA to 2 seconds (i.e., the 1 second caitplane downtime

plus the 1 second LSAetransmit-interval).

Edge Router Migration

Here we con gure VR5 as the fth edge router in the network thatruns BGP in
addition to OSPF. VR5 receives a full Internet BGP routing table with255k routes
(obtained from RouteViewson Dec 12, 2007) from an eBGP peer tha not included
in Figure 3.7, and it forms an iBGP full mesh with the other four edge routers.
With the addition of a full BGP table, the memory dump le size grows fom
3.2 MB to 76.0 MB. As a result, it takes longer to suspend/dump the viual router,
copy over its dump le, and resume it. The average downtime of theoatrol plane
during migration increases to between 3.484 and 3.594 seconds, v@thaverage of
3.560 seconds over 10 runs. We observe that all of VR5's BGP seassistay intact
during its migration. The minimal integer hello-interval VR5 can support without
breaking its OSPF adjacencies during migration is 2 seconds (wittead-interval set
to 8 seconds). In practice, ISPs are unlikely to set the timers mudbwer than the

default values, in order to shield themselves from faulty links or equigent.

87

3.7 Migration Scheduling

This paper primarily discusses the question of migration mechanismég¢w to mi-
grate") for VROOM. Another important question is the migration sheduling (\where
to migrate™). Here we brie y discuss the constraints that need tde considered when
scheduling migration and several optimization problems that are paof our ongoing
work on VROOM migration scheduling.

When deciding where to migrate a virtual router, several physicabnstraints need
to be taken into consideration. First of all, an \eligible" destination plysical router for
migration must use asoftware platformcompatible with the original physical router,
and have similar (or greater)capabilities (such as the number of access control lists
supported). In addition, the destination physical router must hge su cient resources
available, including processing powel(whether the physical router is already hosting
the maximum number of virtual routers it can support) andlink capacity (whether
the links connected to the physical router have enough unusedrafwidth to handle
the migrating virtual router's tra c load). Furthermore, the redundancyrequirement
of the virtual router also needs to be considered|today a routeris usually connected
to two di erent routers (one as primary and the other as backup¥or redundancy. If
the primary and backup are migrated to the same node, physicaldendancy will be
lost.

Fortunately, ISPs typically leave enough \head room" in link capacitie to absorb
increased tra c volume. Additionally, most ISPs use routers from ae or two vendors,
with a small number of models, which leaves a large number of eligible gioal routers
to be chosen for the migration.

Given a physical router that requires maintenance, the questiorf ahere to mi-
grate the virtual routers it currently hosts can be formulated asan optimization
problem, subject to all the above constraints. Depending on thergference of the

operator, di erent objectives can be used to pick the best desttion router, such
88

as minimizing the overall CPU load of the physical router, minimizing thenaximum
load of physical links in the network, minimizing the stretch (i.e., lateng increase) of
virtual links introduced by the migration, or maximizing the reliability of the network
(e.g., the ability to survive the failure of any physical node or link). Haever, nding
optimal solutions to these problems may be computationally intractale. Fortunately,
simple local-search algorithms should perform reasonably well, sinde thumber of
physical routers to consider is limited (e.g., to hundreds or small thklsands, even for
large ISPs) and nding a \good" solution (rather than an optimal ore) is acceptable
in practice.

Besides migration scheduling for planned maintenance, we are alsaokimy on the
scheduling problems of power savings and tra ¢ engineering. In thease of power
savings, we take the power prices in di erent geographic locationstanaccount and
try to minimize power consumption with a certain migration granularity (e.g., once
every hour, according to the hourly tra ¢ matrices). In the caseof tra ¢ engineering,

we migrate virtual routers to shift load away from congested physal links.

3.8 Summary

VROOM is a new network-management primitive that supports live migation of vir-
tual routers from one physical router to another. To minimize dismptions, VROOM
allows the migrated control plane to clone the data-plane state athe new loca-
tion while continuing to update the state at the old location. VROOM temporarily
forwards packets using both data planes to support asynchrame migration of the
links. These designs are readily applicable to commercial router platis. Exper-
iments with our prototype system demonstrate that VROOM does ot disrupt the

data plane and only brie y freezes the control plane. In the unlikelyscenario that a

89

control-plane event occurs during the freeze, the e ects are ggly hidden by existing

mechanisms for retransmitting routing-protocol messages.

90

Chapter 4

Seamless Edge Link Migration

with Router Grafting

4.1 Introduction

With VROOM we enable migrating an entire virtual router. While this greatly sim-
pli es many network management tasks, in some instances migratig entire virtual
router is too coarse of a granularity. In this chapter we present more ne-grained
migration mechanism.

In nature, grafting is where a part of one living organism (e.g., tissugom a
plant) is removed and fused into another organism. We apply this coapt to routers
to enable new network-management capabilities which allow networkanges to be
made with minimal disruption. We call this router grafting. With router grafting, we
view routers in terms of their parts and enable splitting these partdom one router
and merging them into another. This capability makes the view of the etwork a
more uid one where the topology can readily change, allowing opems to adapt
their networks without disruption in the service o ered to users. & envision router

grafting to eventually be applicable to arbitrary subsets of routeresources and/or

91

protocols. However, in this chapter we take the rst step toward this vision by
focusing how to \graft" a BGP session and the underlying link from oa router to

another.

4.1.1 A Case for Router Grafting

The ability to adapt the network is an essential component of netwk management.
Unfortunately, today's routers and routing protocols make chage di cult. Changes
to the network cause disruption, forcing operators to weigh thedme t of making a
change against the potential impact performing the change will hav For example,
today, the basic task of rehoming a BGP session requires shuttingwin the session,
recon guring the new router, restarting the session, and exchging a large amount
of routing information typically leading to downtimes of several minus. Further
complicating matters is the fact that service-level agreements witcustomers often
prohibit events that result in downtime without receiving prior approv/al and schedul-
ing a maintenance window. This hand-cu s the operator. In this séion we provide
several motivating examples of why seamless migration is needed aviay it would
be desirable to do at the level of individual sessions.

Load balancing across blades in a cluster router: Today's high-end routers
have modular designs consisting of many cards|processor bladesrfrunning routing
processes and interface cards for terminating links|spread ovemultiple chassis. In
essence, the router itself is a large distributed system. Load batamg is an important
function in distributed systems, and routers are no exception|today's routers often
run near their limits of processing capacity3]. Unfortunately, routers are not built
with load balancing in mind. A BGP session is associated with a routing pcess on a
particular blade upon establishment, making it di cult to shift load to a nother blade.
A common approach used with Web servers is to drain load by directimgw requests

to other servers and waiting for existing requests to complete. tbrtunately, this

92

technique is not applicable to routers, since routing sessions run anditely and unlike
web services have persistent state. However, with the ability to nmate individual
sessions, achieving better utilization of the router's processingpailities is possible.

Rehoming a customer: An ISP homes a customer to a router based on ge-
ographic proximity and the availability of a router slot that can acconmodate the
customer's request 44]. However, this is done only at the time when a customer
initiates service, based on the state of the network at that time. &oming might
be necessary if the customer upgrades to a new service (such adtioast, IPv6, or
advanced QoS or monitoring features) available only on a subset olters. Rehom-
ing is also necessary when an ISP upgrades or replaces a router aedds to move
sessions from the old router to the new one. Customer rehoming @hves moving
the edge linkjwhich can be done quickly because of recent innovatianin layer-two
access networks|as well as the BGP session.

Planned maintenance: Maintenance is a fact of life for network operators, yet,
even though maintenance is planned in advance, little can be done teep the router
running. Consider a simple task of replacing a power supply. The besbmmon
practice is for operators to recon gure the routing protocols talirect tra c away
from that router and, once the tra c stops owing, to take the r outer oine. Un-
fortunately, this approach only works for core routers within an$P where alternate
paths are available. At the edge of the network, an attractive alt@ative would be
to graft all of the BGP sessions with neighboring networks to othemouters to avoid
disruptions in service. Migrating at the level of individual sessions isrgferable to
migrating all of the sessions and the routing processes as a grogmce ne-grain
migration allows multiple di erent routers to absorb only a small amouh of extra
load during the maintenance interval.

Tra c engineering: Tra ¢ engineering is the act of recon guring the network

to optimize the ow of tra c, to minimize congestion. Today, tra c e ngineering in-

93

volves adjusting the routing-protocol parameters to coax theouters into computing
new paths that better match the o ered tra c, at the expense d transient disruptions
during routing convergence. Router grafting enables a new appiah to tra ¢ engi-

neering, where certain customers are rehomed to an edge routeat better matches
the tra c patterns. For example, if most of a customer's tra c lea ves the ISP's net-
work at a particular location, that customer could be rehomed closéo that egress
point. In other words, we no longer need to consider the tra ¢ matix as xed when
performing tra c engineering|instead, we can change the trac m atrix to better

match the backbone topology and routing by having tra c enter the network at a

new location.

4.1.2 Challenges and Contributions

The bene ts of router grafting are numerous. However, the dem of today's routers
and routing protocols make realizing router grafting challenging. @fting a BGP
session involves (i) migrating the underlying TCP connection, (ii) ex@nging routing
state, (iif) moving the routing-protocol con guration from one rauter to another, and
(iv) migrating the underlying link. Ideally, all these actions need to begyerformed
in a manner that is completely transparent (i.e., without involving the puters and
operators in neighboring networks) and does not disrupt forwanay and routing (i.e.,
data packets are not dropped and routing adjacencies remain up)

Unfortunately, we cannot simply apply existing techniques for applation-level
session migration. Moving a BGP session to a di erent router changehe network
topology and hence, the routing decisions at other routers. In gicular, the remote
end-point of the session must be informed of any routing change#jat is, any di er-
ences between the \best routes” chosen by the new and old homipgints. Similarly,

other routers in the ISP network need to change how they routeward destinations

94

reachable through that remote end-point|they need to learn that these destinations
are now reachable through the new homing location.

In addition, we cannot simply apply our proposed techniques for vimal-router
migration (as discussed in ChapteB), for two main reasons. First, the two physical
routers may not be compatible|they may run di erent routing soft ware (e.g., Cisco,
Juniper, Quagga, or XORP). Second, we want to migrate and mergmly a single
BGP session, not the entire routing process, as many scenarios®éfrom ner gran-
ularity. Instead, we view virtual-router migration as a complementgy management
primitive.

Fortunately, extending existing router software to support gréiing requires only
modest changes. The essential state that must be migrated isa@iftwell separated in
the code. This makes it possible to export the state from one routand import it
to another without much complexity. In this chapter, we present a architecture for

realizing router grafting and make the following contributions:

Introduce the concept of router grafting, and realize an instaecof it through
BGP session migration. We demonstrate that BGP session migratiorarc be
performed in today's monolithic routing software, without much modcation or
refactoring of the code. Our fully-automated prototype routeigrafting system

is built by using and extending Click, Linux, and Quagga.

Achieve transparency, where the remote BGP session end-poinnist modi ed
and is unaware migration is happening. We achieve this by bootstrajng a
routing session at the new homing location, with the old router emulatg the
remote end-point. The new homing point then takes over the role dlfie old
router, sending the necessary routing updates to notify the reste end-point of

routing changes.

95

Introduce optimizations to nearly eliminate the impact of migration onother
routers not directly involved in the migration. We achieve this by cap#lizing
on the fact that the routers already have much of the routing infonation they

need, and that we know the identity of the old and new homing points.

Describe an architecture where unplanned routing changes (swahlink failures)
during the grafting process do not a ect correctness, and wherpackets are
delivered successfully even during the migration. At worst, packetemporarily
traverse a di erent path than the control plane advertises|a common situation

during routing convergence.

Present an optimization framework for tra ¢ engineering with router grafting
and develop algorithms that determine which tra ¢ end-points shold migrate,
and where. Our experiments with Internet2 trac and topology daa show
that router grafting allows the network to carry at least 25% mordra c (at

the same level of performance) over optimizing routing alone.

The remainder of the chapter is organized as follows. Sectidr? discusses how
the operation of BGP makes router grafting challenging. In SectioA.3 we present
the router grafting architecture, focusing only on the control [ane. Section4.4 ex-
plains how we ensure correct routing and forwarding, even in thece of unplanned
routing changes. In Sectiont.5we present our prototype, followed by a discussion of
optimizations that reduce the overhead of grafting a BGP session Bection4.6. We
present an evaluation of our prototype and proposed optimizatienn Section4.7. In
Section4.8 we present new algorithms for applying router grafting to tra c ergineer-
ing along with an evaluation of real tra c on a real netwok. We wrap p with related

work in Section4.9 and the conclusion in Sectiont.10Q

96

Figure 4.1: Migration protocol layers.

4.2 BGP Routing Within a Single AS

Grafting a BGP session is di cult because BGP routing relies on manyayers in the
protocol stack and manycomponentswithin an AS. In this section, we present a brief
overview of BGP routing from the perspective of a single autonomswsystem (AS)

to identify the challenges our grafting solution must address.

4.2.1 Protocol Layers: IP, TCP, & BGP

As illustrated in Figure 4.1, two neighboring routers exchange BGP update messages
over a BGP session that runs on top of a TCP connection that, in tur, directs packets
over the underlying IP link(s) between them. As such, grafting a B8 session will
require moving the IP link, TCP connection, and BGP session from orlecation to
another.

IP link: An AS connects to neighboring ASes through IP links. While a link
could be a direct cable between two routers, these IP-layer linksgigally correspond

to multiple hops in an underlying layer-two network. For example, roiers at an

97

exchange point often connect via a shared switch, and an ISP typlty connects
to its customers over an access network. These layer-two neti® are increasingly
programmable, allowing dynamic set-up and tear-down of layer-the links [LO4 34,
14, 90]. This is illustrated in Figure 4.1 where the link between routers A and B is
through a programmable transport network which can be changed connect routers
A and C. These innovations enable seamless migration of an IP link fraane location
to another within the scope of the layer-two network, such as reming a customer's
access link to terminate on a di erent router in the ISP's network.

TCP connection: The neighboring routers exchange BGP messages over an
underlying TCP connection. Unlike a conventional TCP connection lheeen a Web
client and a Web server, the connection must stay \up" for long pévds of time, as
the two routers are continuously exchanging messages. Furtheach router sends
keep-alive messages to enable the other router to detect lapsesannectivity. Upon
missing three keep-alive messages, a router declares the othertep as dead and
discards all BGP routes learned from that neighbor. As such, gtafg a BGP session
requires timely migration of the underlying TCP connection.

BGP session: Two adjacent routers form a BGP session by rst establishing
a TCP session, then sending messages negotiating the propertieshe BGP ses-
sion, then exchanging the \best route" for each destination prex. This process is
controlled by a state machine that speci es what messages to eacige and how to
handle them. Once the BGP session is established, the two routeend incremental
update messages|announcing new routes and withdrawing routethat are no longer
available. A router stores the BGP routes learned from its neighban an Adj-RIB-in
table, and the routes announced to the neighbor in afAdj-RIB-out table. Each BGP

session has con guration state that controls how a router Itersand modi es BGP

1Depending on the technology used to realize the layer-two networkthe scope might be geo-
graphically contained, e.g., in the case of a packet access networky might be signi cantly more
spread out, e.g., in the case of a national footprint programmable ptical transport network.

98

routes that it imports from (or exports to) the remote neighbor.As such, grafting a
BGP session requires transferring a large amount of RIB (Routingnfformation Base)

state, as well as moving the associated con guration state.

4.2.2 Components: Blades, Routers, & ASes

A BGP session is associated with a routing process that runs on a pessor blade
within one of the routers in a larger AS. As such, grafting a BGP sdes involves
extracting the necessary state from the routing process, traferring that state to
another location, and changing the routing decisions at other roets as needed.

Processor blade: The simplest router has a processor for running the routing
process, multiple interfaces for terminating links, and a switching baic for directing
packets from one interface to another. The BGP routing processaintains sessions
with multiple neighbors and runs a decision process over thAj-RIB-in tables to
select a single \best" route for each destination pre Xx. The routig process stores the
best route in aLoc-RIB table, and applies export policies to construct thé\dj-RIB-
out tables and send the corresponding update messages to each rogigh

IP router: Today's high-end routers are large distributed systems, consisgjrof
hundreds of interfaces and multiple processor blades spread owee or more chas-
sis. These routers run multiple BGP processes|one on each proses blade|each
responsible for a portion of the BGP sessions as shown in Figure. For a cluster-
based router to scale, each BGP process runs its own decision pgscand exchanges
its \best" route with the other BGP processes in the router, usinga modi ed ver-
sion of internal BGP (iBGP) [95]. This allows the distributed router to behave the
same way as a simple router that runs a single BGP process. Any BGIPopess can
handle any BGP session, since all processors can reach the intfaards through

the switching fabric. As such, grafting a BGP session from one blade another in

99

Figure 4.2: Migrating the session with X between route processor biss (from RP1
to RP2).

the same router (e.g., the session with X from RP1 to RP2 in Figuré.2) does not
require migrating the underlying layer-three link.

Autonomous System (AS): An AS consists of multiple, geographically-
distributed routers. Each router forms BGP sessions with neighbiag routers in
other ASes, and uses IBGP to disseminate its \best" route to othamwouters within
the AS. The routers in the same AS also run an Interior Gateway Ptocol (IGP),
such as OSPF or IS-IS to compute paths to reach each other. Bamuter in the
AS runs its own BGP process(es) and selects its own best route &ach pre x. The
routers may come to di erent decisions about the best route, natnly because they
learn di erent candidate routes but also because the decision deys on the IGP
distances to other routers (in a practice known as hot-potato wting). This can be
seen in Figure4.3 where routers B and C have di erent paths to the destinatiord.
As such, grafting a BGP session from one router to another (e.ghe session with A

from router B to C in Figure 4.3) may change the BGP routing decisions.

4.3 Router Grafting Architecture

Seamless grafting of a BGP session relies on a careful progressimough a number

of coordinated steps. These steps are summarized in Figutel, which shows a

100

Figure 4.3: Migrating session with A between routers (from B to C).

migrate-from router that hands o one of its BGP sessions to anigrate-to router in
the same AS. These routers do not need to run the same softwanebe from the
same vendor|they need only have the added support for router gafting. When the
grafting process starts, the migrate-from router is responsibler handling a BGP
session with the remote end-point route’A (not shown). This BGP session with
router A is to be migrated. The migrate-from router begins exporting the rding
information and the migrate-to router is initialized with its own sessioflevel data
structures and a copy of the policy con guration, without actually establishing the
session (Figure4.4(a)). Then, the TCP connection is migrated, followed by the
underlying link (Figure 4.4(b)). Finally, the migrate-to router imports the routing
state and updates the other routers (Figuré.4(c)), resulting in the migrate-to router
handling the BGP session with the remote end-point ((Figuré.4(d)). This section
focuses exclusively on control-plane operations, deferring dissios of the data plane

until Section 4.4.

4.3.1 Copying BGP Session Con guration

Each BGP session end-point has a variety of con guration state aded to establish
the session with the remote end-point (with a given IP address andSAnumber)

and apply policies for Itering and modifying route announcements. fie network

101

(a) Pre-con g, Export RIB. (b) Migrate link and TCP.

(c) Import RIB. (d) After migration.
Figure 4.4: Router grafting mechanisms { migrating a session with Route A (not shown)
from router Migrate-from to router Migrate-to. The boxes marked bgpd and network stack
are the software programs. The boxes markedRIB A, configa, and TCPp are the routing,
con guration, and TCP state respectively.

operators, or an automated management system, con gure trsssion end-point by
applying con guration commands at the router's command-line inté¢ace or uploading
a new con guration le. The router stores the con guration information in various
internal data structures.

Rather than exporting these internal data structures, we capélize on the fact that
the current con guration is captured in a well-de ned format in the con guration le.
Our design simply \dumps" the con guration le for the migrate-from router, extracts

the commands relevant to the BGP session end-point, and applieege commands to

102

the migrate-to router, after appropriate translation to accounfor vendor-dependent
di erences in the command syntax. This allows the migrate-to routeto create its
own internal data structures for the con guration information.

However, the migrate-to router is not yet ready to assume respsibility for the
BGP session. To nish initializing the migrate-to router, we extend tle BGP state
machine to include an ‘inactive' state, where the router can creatata structures
and import state for the session without attempting to communicagt with the remote
end-point. The migrate-to router transitions from the “inactive' sate to "established'

state when instructed by the grafting process.

4.3.2 Exporting & Resetting Run-Time State

A router maintains a variety of state for BGP session end-points. af'meet our goals,
BGP grafting need only consider the Routing Information Bases (Bks)|the other
state may be simply reinitialized at the migrate-to routef.

Routing Information Bases (RIBS): The most important state associated
with the BGP session-end-point is stored in the routing information &ses|the Adj-
RIB-in and Adj-RIB-out. In our architecture, we dump the RIBs at the migrate-from
router to prepare for importing the information at the migrate-to router. While the
RIBs are represented di erently on di erent router platforms, the information they
store is standardized as part of the BGP protocol. In most routeimplementations,
the RIB data structure is factored apart from the rest of the rating software, and
many routers support commands for \dumping" the current RIBs Even though
the RIB dump formats vary by vendor, de facto standards like thgopular MRT

format [10] do exist.

2Router grafting does not preclude the remaining state from being isluded, simply we chose
not to in order to keep code modi cations at a minimum while still meeting our goals of (i) routing
protocol adjacencies staying up and (ii) all routing protocol mesages being received.

103

State in the BGP state machine: A BGP session end-point stores information
about the BGP state machine. We can forgo migrating this state { ta BGP session
is either “established' or not. If the session is in one of the not-ebtished states,
we can simply close the session at the migrate-from router and dtaéine migrate-to
router in the idle state. This does not trigger any transient disrugbn|since the
session is not \up" anyway. If the session at the migrate-from raer is "established,’
we can start the new session at the migrate-to router in the “inactV state.

BGP timers: BGP implementations also include a variety of timers, many of
which are vendor-dependent. For example, some routers use aiRM (Minimum
Route Advertisement Interval) timer to pace the transmission of BP update mes-
sages. This is purely a local operation at one end-point of the sessiaot requiring
any agreement with the remote end-point. Another common timer ithe keep-alive
interval that drives the periodic sending of heartbeat messagesd a hold timer for
detecting missing keep-alive messages from the remote end-pokdrtunately, miss-
ing a single keep-alive message, or sending the message slightly earlgate, would
not erroneously detect a session failure because routers typicallgit for three missed
keep-alive messages before tearing down the session. As suclidoveot migrate BGP
timer values and instead simply initialize whatever timers are used at ghmigrate-to
router.

BGP statistics: BGP implementations maintain numerous statistics about each
session and even individual routes. These statistics, while broadlgeful for network
monitoring, are not essential to the correct operation of the raar. They only have
meaning at the local session end-point. In addition, these statisicare vendor de-
pendent and not well modularized in the router software implement®ns. As such,
we do not migrate these statistics and instead allow the migrate-t@uter to initialize

its own statistics as if it were establishing a new session.

104

4.3.3 Migrating TCP Connection & IP Link

As part of BGP session grafting, the TCP connection must move fno the migrate-
from router to the migrate-to router. Because we do not assumnany support from
the remote end-point, the migrate-to router must use the samePladdresses and
sequence and acknowledgment numbers that the migrate-fromuter was using. In
BGP, IP addresses are used to uniquely identify the BGP session endints and not
the router as a whole. Further, we assume the link between the rete end-point
and the migrate-from (or migrate-to) router is a single hop IP netark where the IP
address is not used for reachability, but only for identi cation. As 8ch, the session
end-point can easily retain its address (and sequence and acknalgi®ment numbers)
when it moves. That is, the single IP address identifying the migratingession can be
disassociated from the migrate-from router and associated withe migrate-to router.
Our architecture simply migrates the local state associated with thhTCP connection
from one router to another.

As with any TCP migration technique, the network must endure a brieperiod
of time when neither router is responsible for the TCP connection. P has its own
retransmission mechanism that ensures that the remote end-pbiretransmits any
unacknowledged data. As long as the transient outage is short,elCP connection
(and, hence, the BGP session) remains up. TCP implementations tode a period of
at least 100 seconds?f] without receiving an acknowledgment|signi cantly longer
than the migration times we anticipate. The amount of TCP state is ratively small,
and the two routers are close to one another, leading to extremdhst TCP migration
times.

The underlying link should be migrated (e.g., by changing the path in thenderly-
ing programmable transport network) close to the same time as theCP connection
state, to minimize the transient disruption in connectivity. Still, the network may
need to tolerate a brief period of inconsistency where (say) the PRCconnection

105

state has moved to the migrate-to router while the tra c still ows via the migrate-
from router. During this period, we need to prevent the migraterbm router from
erroneously responding to TCP packets with a TCP RST packet thatesets the con-
nection. This is easily prevented by con guring the migrate-from rater's interface
to drop TCP packets sent to the BGP port (i.e., 179). The migraterbm route can
successfully deliver reguladata tra c received during the transmission, as discussed

later in Section4.4.

4.3.4 Importing BGP Routing State

Once link and connection migration are complete, the migrate-to réer can move its
end-point of the BGP session from the ‘inactive' state to the “esththed' state. At
this time, the migrate-to router can begin \importing" the RIBs received from the
migrate-from router. However, the import process is not as simpés merely loading
the RIB entries into its own internal data structures. The migratefrom and migrate-
to routers could easily have a di erent view of the \best" route foreach destination
pre x, as illustrated in Figure 4.5. In this scenario, before the migration, A reaches
E's pre xes over the direct link between them, and B reaches E's pres via A, after
the migration, A should reach E's pre xes via B, and B should reach E'gre xes
over the direct link. Similarly, suppose routers C and D connect to aoommon pre X.
Before the migration, E follows the AS path \100 200 300" (througIf) to reach that
pre x; after the migration E follows the AS path \100 200 400" (through D). Reaching
these conclusions requires routers A and B to rerun the BGP decisiprocess based
on the new routes, and disseminate any routing changes to neighing routers.

To make the process transparent to the remote end-point, wesesitially emulate
starting up a new session at router B, with router A temporarily plaing the role of
the remote end-point to announce the routes learned from E. Threquires router A

to replay the Adj-RIB-in state associated with E to router B. Roukr B stores these

106

Figure 4.5: A topology where AS 200 has migrate-from router A, migte-to router
B, internal router F, and external routers C, D, and G, and remt end-point E.

routes and reruns its BGP decision process, as necessary, to pote the new best
routes to pre xes E is announcing. This will cause update messagesbe sent to
other routers within the AS and, sometimes, to external routerfike C and D). If the
attributes of the route (e.g., the AS-PATH) do not change, as is th case in Figurel.5,
other ASes like AS 300 and AS 400 do not receiamy BGP update message (since,
from their point of view, the route has not changed), thus minimizinghe overhead
that router grafting imposes on the global BGP routing system.

Next, we update E with the best routes selected by B. Here, we takadvantage
of the fact that E has already learned routes from the migrate-&ém router A. The
change in topology might change some of those routes, and we néz@ccount for
that. To do so, the migrate-to router runs the BGP decision pross to compare
its currently-selected best route to the route learned from the igrate-from router.
If the best route changes, B sends an update message to its nbimyis, including
router E. This is in fact exactly the same operation the router woulgberform upon
receiving a route update from any of its neighbors. We expect thabuters A and B
would typically have the same best route for most pre xes, espetiaif A and B are

relatively close to each other in the IGP topology. As such, most ofi¢ time router B

107

would not change its best route and hence would not need to send @mdate message

to router E.

4.4 Correct Routing and Forwarding

Router grafting cannot be allowed to compromise the correct futioning of the net-
work. In this section, we discuss how grafting preserves correcuting state (in the
control plane) and correct packet forwarding (in the data plane)even when unex-

pected routing changes occur in the middle of the grafting process

4.4.1 Control Plane: BGP Routing State

Routing changes can, and do, happen at any time. BGP routers dgseceive millions
of update messages a day, and these could arrive at any time duritige grafting
process { while the migrate-from router dumps its routing state, hile the TCP
connection and underlying link are migrated, or while the migrate-toauter imports
the routing state and updates its routing decisions. Our graftingadution can correctly
handle BGP messages sent at any of these times.

While the migrate-from router dumps the BGP routing state: The goal
is to have the in-memory Routing Information Base (RIB) be consistt with the RIB
that was dumped as part of migration. Here, we take advantage tife fact that the
dumping process and the BGP protocol work on a per-pre x basigonsider a Adj-
RIB-in with three routes (p1, p2, p3) corresponding to three pr&es, of which (pl
and p2) have been dumped already. When an update p3' (for thersa pre x as p3) is
received, the in-memory RIB can be updated since it correspondsd pre x that has
not been dumped, { to prevent dumping a pre x while it is being updatd, the single
entry in the RIB needs to be locked. If we receive an update pl' (fthe same pre x

as pl), processing it and updating the in-memory RIB without updang the dumped

108

image will cause the two to be inconsistent { delaying processing th@date is an
option, but that would delay convergence as well. To solve this, wemitalize on BGP
being an incremental protocol where any new update message imiliicwithdraws
the old one. Since we treat the dumped RIB as a sequence of updatessages, we
can process the update immediately and append pl' to the end ofetlumped RIB
to keep it consistent.

While the TCP connection and link are migrating: BGP update messages
may be sent while the TCP connection and the underlying link are migratg. If a
message is sent by the remote end-point, the message is not dedidesind is correctly
retransmitted after the link and TCP connection come up at the migate-to router.
If an update message is sent by another router to the migratesfn router over a
di erent BGP session, there is not a problem because the migratesfn router is no
longer responsible for the recently-rehomed BGP session. Theref the migrate-from
router can safely continue to receive, select, and send route$.ah update message
is sent by another router to the migrate-to router over a di erebh BGP session, the
migrate-to router can install the route in its Adj-RIB-in for that session and, if needed,
update its selection of the best route { similar to when a route is rened before the
migration process.

While the migrate-to router imports the routing state: The nal case to
consider is when the migrate-to router receives a BGP update mags while import-
ing the routing state for the rehomed session. Whether from themote end-point
or another router, if the route is for a pre x that was already impated, there is no
problem since the migration of that pre x is complete. If it is for a prex that has not
already been imported, only messages from the remote end-poiatiter need special
care. (BGP is an asynchronous protocol that does not depend tie relative order of
processing for messages learned from di erent neighbors.) A nmegs from the remote

end-point must be processed after the imported route but we wialilike to process

109

it immediately. Since the update implicitly withdraws the previous annoocement
(which is in the dump image), we mark the RIB entry to indicate that it is more
recent than the dump image. This way, we can skip importing any engs in the

dump image which have a more recent RIB update.

4.4.2 Data Plane: Packet Forwarding

Thus far, this paper has focused on the operation of the BGP cant plane. However,
the control plane's only real purpose is to select paths for forwding data packets.
Fortunately, grafting has relatively little data-plane impact. When noving a BGP
session between blades in the same router, the underlying link doest move and
the \best" routes do not change. As such, the forwarding tableaks not change, and
data packets travel as they did before grafting took place { theata tra c continues
to ow uninterrupted.

The situation is more challenging when grafting a BGP session from orauter to
another, where these two routers do not have the same BGP rang information and
do not necessarily make the same decisions. Because the TCP cotioe and link
are migratedbeforethe migrate-to router imports the routing state, the remote end
point brie y forwards packets through the migrateto router based on BGP routes
learned from the migratefrom router. Since BGP route dissemination within the
AS (typically implemented using iBGP) ensures that each router leamat least one
route for each destination pre x, the two routers will learn route for the same set
of destinations. Therefore, the undesirable situation where theemote end-point
forwards packets that the migrate-to router cannot handle will at occur.

Although data packets are forwarded correctly, the end-to-ehforwarding path
may temporarily di er from the control-plane messages. For exantg, in Figure 4.5,
data packets sent by E will start traversing the path through AS 80, while E's

control plane still thinks the AS path goes through AS 300. Theserds of temporary

110

Figure 4.6: The router grafting prototype system.

inconsistencies are a normal occurrence during the BGP routengergence process,
and do not disrupt the ow of tra c. Once the migrate-to router nishes importing
the routes, the remote end-point will learn the new best route ancbntrol- and data-
plane paths will agree again.

Correct handling of data trac must also consider the packets roted toward
the remote end-point. During the grafting process, routers tlmughout the AS for-
ward these packets to the migrate-from router until they learn laout the routing
change (i.e., the new egress point for reaching these destinationS)nce the migrate-
from router knows where the link, TCP connection, and BGP sessidrave moved, it
can direct packets in ight there through temporary tunnels esthlished between the

migrate-from router and the migrate-to router.

4.5 BGP Grafting Prototype

We have developed an initial prototype to demonstrate router gfang. Figure 4.6 de-
picts the main components of the prototype. These include (i) a modd Quagga [6]
routing software, (ii) the graft daemon for controlling the entire pocess, (iii) the
SockMi [21] kernel module for TCP migration, and (iv) a Click [/Z] based data plane

for implementing link migration.
111

The controlling entity in the prototype is the graft daemon. This is the entity that
initiates the BGP session grafting, interacting with each of the otlrecomponents to
perform the necessary steps. We assume each graft daemon lbarreached by an
IP address. With this, the graft daemon on the migrate-from rowdr will initiate a
TCP connection with the daemon on the migrate-to router. Once &blished, the

migration process follows the six general steps discussed in the feifg subsections.

4.5.1 Con guring the Migrate-To Router

In our architecture, con guration state is gleaned from a dump othe migrate-from
router's con guration le, rather than its internal data structu res. The graft daemon
rst extracts BGP session con guration from the con guration le of the migrate-from
router, including the rules for Itering and modifying route announ@ments. Then the
extracted con guration commands are applied to the migrate-toauter. Our current
implementation includes a simplistic parser for Quagga's commands foon guring
BGP session& In order to con gure the migrate-to router before migrating tte TCP
connection, we added an “inactive' state to the BGP state machin&Ve also added a

con guration command to the Quagga command-line interface:
neighbor w.x.y.z inactive

that triggers the router to create all internal data structuresfor the session, without

attempting to open or accept a socket with the remote end-point.

4.5.2 Exporting Migrate-From BGP State

Once the migrate-to router is con gured, the grafting processan proceed to the

second step, which is initiating the export of the routing state on tbé migrate-from

3As we add support for XORP, we will develop a more complete parsersathe con guration will
require translating between con guration languages|generally a h ard problem, though easier in our
case because we focus on a relatively narrow aspect of the con gation.

112

router. The grafting daemon on the migrate-from router initiategshe export process

by calling a command in Quagga that we added:
neighbor w.x.y.z migrate out

When this command is executed, our modi ed Quagga software traxses the internal
data structures, dumping the necessary routing state (Adj-A3-in and the selected

routes in the loc-RIB) to a le.

4.5.3 Exporting Migrate-From TCP State

Once the routing state is dumped, the modi ed Quagga calls thexport _socket
function as part of the SockMi API to migrate the TCP state. This finction makes
anioctl call to the kernel module, passing the socket's le descriptor. Th8ockMi
kernel module is a Linux kernel module for kernels 2.4 through 2.6|weested with
kernel version 2.6.19.7. Theoctl call causes the kernel module to interact with
Linux's internal data structures. It removes the TCP connectionfrom the kernel,
writing the socket state to a character device. Note that part othis state is related
to the protocol itself (e.g., the current sequence number) as wels the bu ers (e.g.,
the receive queue and the transmit queue of packets sent, buttrecknowledged).
When this state is written, the kernel module sends a signal to theaft daemon on
the migrate-from router, which can read from the character dése and send to the

daemon on the migrate-to router.

4.5.4 Importing the TCP State

The next step is to initiate the import of the TCP state at the migrate-to router.
Upon receiving the state from the migrate-from router, the grafdaemon on the
migrate-to router rst noti es Quagga that it is about to import st ate for a given

‘inactive’ session. This is done through a command we added:
113

neighbor w.x.y.z migrate in

Upon executing the command, our modi ed Quagga invokes thport _socket func-
tion in the SockMi API. This function blocks until a TCP connection is inported.
During this time, the graft daemon makes amoctl to the SockMi kernel module. The
graft daemon then passes the TCP session state to a charact@vite which is read
by the kernel module. The SockMi kernel module accesses the irdata structures
to add a socket with that TCP connection state, which unblocks th@nport _socket

function.

4.5.5 Migrating the Layer-Three Link

At this point, the graft daemon of the migrate-to router triggersthe migration of the
underlying link. This includes removing the migrating session's IP addse from the
migrate-from router, adding the IP address to the migrate-to raeter, and migrating
the layer-two link. As we did not have access to equipment to use aggrammable
transport network, we instead built our own simple layer-two netwdk that connects
both the migrate-from and migrate-to router to the remote engsoint with a Click [77]
con guration that emulates a ‘programmable transport’. This Click on guration

performs a simple switching primitive that connects the remote engeint to either
the migrate-from or the migrate-to router. In one setting, packts from the migrate-
from router are sent to the remote end-point router, packetsrédm the migrate-to
router are dropped, and packets from the remote end-point rter are sent to the
migrate-from router. With the alternative setting, the reverse acurs, forming a link
between the migrate-to router and the remote-end point router This switch value
is settable via a handler, making it accessible to the graft daemon ming on the

migrate-from router.

114

4.5.6 Importing Routing State

As the nal step, when the importing of the TCP connection is comple and the
import _socket function is unblocked, the modi ed Quagga reads the routing state
which was stored in a le when the local graft daemon read it in from th graft
daemon running on the migrate-from router. Much as the \normal'operation of
the router, which receives a BGP message from a socket and thetisa function to
handle the update, the importing process will read the Adj-RIB-infbm a le and call
the same function to process the routing update. For comparindgi¢ RIB from the
migrate-from router to the migrate-to router, the importing process reads the route
from the le, looks up the route in the local RIB, and compares themlf they di er,

it will use existing functions to send out the route to the peer.

4.6 Optimizations for Reducing Impact

Grafting a BGP session requires incrementally updating the remoten@-point as
well as the other routers in the AS. In this section, we present optizations that can
further reduce the tra c and processing load imposed on routersot directly involved
in the grafting process. These optimizations capitalize on the knowdge that grafting
is taking place and the routers' local copy of the routes previouslgarned from the
remote end-point. First, we discuss how we can keep routers fr@ending unnecessary
updates to their eBGP neighbors. Second, we then discuss how thejority of iBGP
messages can be eliminated. Finally, we consider the intra-clusteuter case where

the routes do not change.

4.6.1 Reducing Impact on eBGP Sessions

Importing routes on the migrate-to router, and withdrawing roues on the migrate-
from router, may trigger a urry of update messages to other B8 neighbors. Con-

115

sider the example in Figure4.5 where before grafting router E had announced
192.168.0.0/16 to router A, which in turn announced the route to Brad C. Eventually
two things will happen: (i) the migrate-from router A will removethe 192.168.0.0/16
route from E and (ii) the migrate-to router B will add the 192.168.0.0/16 route from
E. Without any special coordination, these two events could happéan either order.

If A removes the route before B imports it, then A's eBGP neighborfike router
C) may receive a withdrawal message, or brie y learn a di erent bésoute (should A
have other candidate routes), only to have A reannounce the rmuupon (re)learning
it from B. Alternatively, if B adds the route before A sends the withdawal message to
C, then A may have both a withdrawal message and the subsequéré)announcement
gueued to send to router C, perhaps leading to redundant BGP neeges. In the rst
case, C may temporarily have no route at all, and in the second casentay receive
redundant messages. In both cases these e ects are tempgydaut we would like to
avoid them if possible.

To do so, rather than deleting the route, A can mark the route aséxported"”|safe
in the knowledge that, if this route should remain the best route, A Wl soon (re)learn
it from the migrate-to router B. For example, suppose the routerém E is the only
route for the destination pre x|then A would certainly (re)learn t he route from B,
and could forgo withdrawing and reannouncing the route to its othheneighbors. Of
course, if A does not receive the announcement (either after serperiod of time or
implicitly through receiving an update with a di erent route for that p re x), then it
can proceed with deleting the exported route.

So far we only considered the eBGP messages the migrate-fromteowvould send.
A similar situation can occur on the eBGP sessions of the other rousan the AS (e.qg.,
router F). This is because these other routers must be noti ed (& iBGP) to no longer
go through A for the routes learned over the migrating session (i.avjth E). Therefore,

the migrate-from router must send out withdrawal messages tositiBGP neighbors

116

and the migrate-to router must send out announcements to its iBB& neighbors. This
may result in the other routers in the AS (e.g., router F) temporarilywithdrawing
a route, temporarily sending a di erent best route, or sending a dundant update
to their eBGP neighbors. Because of this, we have the migrate-fnorouter send the
marked list to each of its iIBGP neighbors and a noti cation that theseall migrated
to the migrate-to router { this list is simply the list of pre xes, not th e associated
attributes. We expect this list to be relatively small in terms of totalbytes. With
this list, the other routers in the AS can perform the same procede, and eliminate

any unnecessary external mesSsages.

4.6.2 Reducing Impact on iBGP Sessions

While using iBGP unmodi ed is su cient for dealing with the change in topology
brought about by migration, it is still desirable to reduce the impact ngration has
on the iBGP sessions. Here, since the route-selection policy will likelg lsonsistent
throughout an ISP's network, we can reduce the number of updatmessages sent by
extending iBGP (an easier task than modifying eBGP). When the migta-from and
migrate-to routers select the same routes, the act of migrationilvnot change the
decision. Since all routers are informed of the migration, the iBGP ulates can be
suppressed (the migrate-from router withdrawing the route anthe migrate-to router
announcing the route). When the migrate-from and migrate-to naters select di erent
routes, it is most likely due to di erences in IGP distances. For the migite-to router,
the act of migration will cause all routes learned from the remote drpoint router to
become directly learned routes, as opposed to some distance awayl therefore the
migrate-to router will now prefer those routes (except when thenigrate-to router's
currently selected route is also directly learned). This change in rteuselection causes
the migrate-to router to send updates to its iIBGP neighbors notifjng them of the

change. However, since it is more common to change routes, we i&uce the number

117

of updates that need to be sent with a modi cation to iBGP where updtes are sent
when the migrate-to router keeps a route instead of when it chaeg a route. Other
routers will be noti ed of the migration and will assume the routes bieg migrated

will be selected unless told otherwise.

4.6.3 Eliminating Processing Entirely

Re-running the route-selection processes is essential as migmatman change the
topology, and therefore change the best route. When migratingithin a cluster
router, the topology does not change, and therefore we shoulé khble to eliminate
processing entirely. The selected best route will be a consistentestion on every
blade. Therefore, even when migrating, while the internal data sictures might need
to be adjusted, no decision process needs to be run and no exéémmessages need to
be sent. In fact, there is no need for any internal messages to ent either. With
the modi ed iBGP used for communication between route processbiades, the next
hop eld is the next router, not the next processor blade { i.e., IBGP rassages are
only used to exchange routes learned externally and do not a ecoWw packets are
forwarded internally. Therefore, upon migration, there is no neetb send an update
as the routes learned externally have already been exchanged.

While exchanging messages and running the decision process canlin@rated,
transferring the routing state from the exporting blade to the imprting blade is still
needed. Being the blade responsible for a particular BGP sessionuiegs that the
local RIB have all of the routes learned over that session. While sermay have been
previously announced by the migrate-from blade, not all of them we. Therefore,
we need to send over the Adj-RIB-in for the migrating session in oed to know all
routes learned over that session as well as which subset of routies migrate-from

blade announced were associated with that session.

118

4.7 Performance Evaluation

In this section, we evaluate router grafting through experimentsvith our proto-
type system and realistic traces of BGP update messages. We fequrimarily on
control-plane overhead, since data-plane performance depermsnarily on the la-
tency for link migration|where our solution simply leverages recent imovations in
programmable transport networks. First, we evaluate our protgpe implementation
from Section4.5 to measure the grafting time and CPU utilization on the migrate-
from and migrate-to routers. Then we evaluate the e ectivenessf our optimizations

from Section4.6in reducing the number of update messages received by other renst

4.7.1 Grafting Delay and Overhead

The rst experiment measures the impact of BGP session graftingnothe migrate-
from and migrate-to routers. To do this we supplemented the topagy shown in
Figure 4.5 with a router adjacent to E (in a di erent AS) and a router adjacen to
B (in a di erent AS). These two extra routers were fed a BGP upda¢ message trace
taken from RouteViews []. This essentially lls the RIB of B and E with routes that
have the same set of pre xes, but di erent paths. We used Emulap.0 to run the
experiment on servers with 3GHz processors and 2GB RAM.

The time it takes to complete the migration process is a function of thsize of the
routing table. The larger it is, the larger the state that needs to beransferred and
the more routes that need to be compared. To capture this relatighip, we varied
the RIB size by replaying multiple traces. The results, shown in Figuré.7, include
both the case where migration occurs between routers (when th@grate-to router
must run the BGP decision process) and the case where migration istlveen blades

(where the decision process does not need to run because theeulythg topology

4This is roughly comparable to the route processors used in commeedly available high-end
routers.

119

Figure 4.7: BGP session grafting time vs. RIB size.

is not changed). The \between blades" curve, then, illustrates #time required to
transfer the BGP routes and import them into the internal data stuctures. Note
that these results do not imply that TCP needs to be able to handle ik long of
an outage where packets go unacknowledged { the TCP migrationquress takes less
than a millisecond. Instead, when compared to rehoming a customterday, where
there is downtime measured in minutes, the migration time is small. In €4 since
in our setup AS100 and AS200 have a peering agreement, the attmggration time
would be less if AS100 were a customer of AS200 (since AS100 woulibaimce fewer
routes to AS200).

The CPU utilization during the grafting process is also important. TheBGP
process on the migrate-from router experienced only a negligible riease in CPU
utilization for dumping the BGP RIBs. The migrate-to router needs b import the
routing entries and compare routing tables. For each pre x in theaceived routing
information, the migrate-to router must perform a lookup to nd the routing table
entry for that pre x. Figure 4.8 shows the CPU utilization at 0.2 second intervals,
as reported bytop, for the case where the RIB consists of 200,000 pre xes. There
are three things to note. First, the CPU utilization is roughly constat. This is

perhaps due to the implementation where the data is received, place a le, then

120

Figure 4.8: The CPU utilization at the migrate-to router during migraton, with a
200k pre x RIB.

iteratively read from the le and processed before reading the nexThis keeps the
CPU utilization at only a fraction as computation is mixed with reads fron disk.
Second, the CPU utilization is the same for both migrating between uters and
migrating between blades. The case between routers merely takesger because of
the additional work involved in running the BGP decision process. Thit, migration
can be run as a lower priority task and use less CPU but take longer {gventing
the migration from e ecting the performance of the router duringspikes in routing

updates, which commonly results in intense CPU usage during the spik

4.7.2 Optimizations for Reducing Impact

While the impact on the migrate-from and migrate-to routers is impdant, perhaps
a more important metric is the impact on the routersnot involved in the migration,
including other routers within the same AS as well as the eBGP neighitso If the
overhead of grafting is relatively contained, network operatoroald more freely apply
the technique to simplify network-management tasks.

First and foremost, the remote end-point experiences an ovedtkdirectly pro-
portional to the number of additional BGP update messages it reses. The number

of messages depends on how many best routes di er between thignate-from and

121

(a) Without optimization. (b) Reducing eBGP impact. (c) Reducing iBGP impact.
Figure 4.9: Updates sent as a result of migration.

migrate-to router|the migrate-from router must send an update message for every
route that di ers. The exact amount depends heavily on the proxinty of the migrate-
from and migrate-to routers|if the two routers are in the same Pant-of-Presence of
the ISP, perhaps no routes would change. As such, we do not egpthis overhead to
be signi cant. Since the sources of overhead for the remote epdint are relatively
well understood, and it is di cult to acquire the kinds of intra-ISP measurement data
necessary to quantify the number of route changes, we do notegent a plot for this
case.

Perhaps the more signi cant impact is on the other routers, both ithin the AS
and in other ASes, that may have to learn new routes for the prees announced by
the remote end-point. To evaluate this, we measured the numbef opdates that
would be sent as a function of the fraction of pre xes where the nrigte-from router
had selected a di erent route than the migrate-to router. By doig so, this covers the
entire range of migration targets (i.e. it does not limit our evaluation & migration
within a PoP). Recall that this di erence is what needs to be correed. Also recall
that the pre xes being considered here are the ones learned frdhe router at the
remote end-point of the session being migrated, not the entire ring table, as these
are the routes that could impact what is sent to other routers. Hoour measurement,
we use a xed set of 100,000 pre xes. However, the results areatitly proportional

to the number of pre xes, and can therefore be scaled approptédy { for migrating

122

a customer link, the number of pre xes would be signi cantly smallerfor migrating
a peering link, the number of pre xes could be higher.

The results are shown in Figuret.9, with the three graphs representing the three
di erent cases as discussed in Sectigh6. (a) direct approach with no optimizations,
(b) optimizations to reduce eBGP messages by capitalizing on redward information
in the network, and (c) optimizations to reduce iBGP messages byedating the route
selection changing as the common case. For the graphs, each lim@esents a xed
fraction of di ering routes that change the selected route as a selt of the grafting.
For example, consider where the migrate-from router selects arpeular route di er-
ent than the migrate-to router. In this case, after migration, tle migrate-to router
selects the route the migrate-from selected (i.e., it changes its owwute). Each line
represents the fraction of times this change occursifor examplethe line labeled 0.2
in Figure 4.9is where 20% of the routes that di er will change to the routes seltsd
by the migrate-from router.

There are several things of note from the graphs. First is that # direct (un-
optimized) approach must send signi cantly more messages. In tloase where the
selected routes do not di er much, which we consider will be a most ligescenario,
the optimized approaches hardly send any messages at all. Secamden comparing
Figure 4.9(b) with Figure 4.9(c), we can see that depending on what would be con-
sidered the common case, we can choose a method that would resulthe fewest
updates. For (b), the assumption is that when the routes di er, he migrate-to router
will not change to the routes the migrate-from selected. Whereas (c), the assump-
tion is that when the routes di er, the migrate-from router will change to the routes
the migrate-from router selected. The reason they would change that the routes
learned from the remote end-point of the session being migrated wilbw be directly
learned routes, rather than via iBGP. It is likely that the policy of roue selection is

consistent throughout the ISPs network, and therefore di eneces will be due to IGP

123

distances and changing the router will change those routes to bera preferable. We
are working on characterizing when these di erences would occur ander to enable
us to predict the impact a given migration might have. Third, and perps most
important, migration can be performed with minimal disruption to other routers in

the likely scenario where there are few di erences in routes selette

4.8 Trac Engineering with Grafting

In addition to the performance of the router grafting mechanism #elf, we are also
interested in applying router grafting to new application areas. Her we evaluate
router grafting for tra c engineering. To do so, we rst give a brief overview of tra ¢
engineering today. We follow this with a description of our model for igration-aware
tra c engineering. Finally, we present an algorithm based on this moel and evaluate

with tra ¢ data from Internet2.

4.8.1 Trac Engineering Today

In traditional tra ¢ engineering, the network is represented by agraph G = (V;E),
where the vertex setV represents routers or switches, and the edge d$etrepresents
the links. Every edgee 2 E has capacityce > 0. We are also given dra ¢ matrix
D = fdjgij2v, where entry d; 0 is the amount of tra c that vertex i wishes to
send vertexj . The goal is to distribute ow across the paths froni to j to minimizing
total link usage (TLU).

TLU minimization re ects a common goal in ISP networks 49. Each link e has
a \cost" that re ects its level of congestion, where lightly-loadedinks are \cheap"
and links become exponentially more \expensive" as the link becomessalily loaded.

The cost function . species the cost as a function of ¢ (the total ow traversing

124

the edge) andc. (the edge capacity). Every . is a piecewise linear, strictly increasing

and convex function.

We use the cost function from49, shown below:

8
fe 1
2 1 fec 2
3fe 3Ce 3 Ce < 3
16 2 f 9
10fe 3G 3 &< 10
e(fe;ce):

178 9 f

0Fe 2C 1 o<1

5000, ¥, 1 <2

Ce 10

T 500G, 3%, I =<1

0 c

The goal is to distribute the entire demand between every pair of vertices in
a manner that minimizes the sum of all link costs (i.e., 2 (fe; G)). (Observe
that the ow along an edge can exceed the edge's capacity.) TLU minimation can
be formulated asminimum-cost multicommodity ow and is thus computable using
existing algorithms for computing multicommodity ows. Realizing this djective in
practice can be done via MPLS and a management system that soltles optimization
problem and installs the resulting paths. Network operators oftetake the indirect
approach of tuning Interior Gateway Protocol (IGP) weights to tosely approximate

the optimal distribution of the trac [49].

4.8.2 Migration-Aware Tra ¢ Engineering

We now extend the tra c-engineering model in Sectior.8.1to incorporate migration.

Table 4.1 summarizes the notation.

Distinguishing users from network nodes: In our model for tra ¢ engineering
with migration, the network (see Figure4.10 is represented by a graplG = (V; E),

where the vertex setV is the union of two disjoint subsets,U and N. U is the set
125

Figure 4.10: Network model for tra ¢ engineering with migration.

Notation Description

G Network graph G = (V; E)

\% Network vertex, union ofU and N
E Network edge, union ofEy and Ey
U
N
E

Set of network users
Set of network nodes

U Subset of edges that connect user 2 U to net-
work nodesinN,Ey;, U N
En Subset of edges that connect network node2 N
to network nodes inN,Ey N N
Ce capacity of edgee 2 E
Ly Potential links, L, Ey
D Demand matrix, D = fdj g;j 2u
d Amount of tra c that user i wishes to send user
J
e cost function used in TLU minimization, function
of fe=G
fe Total ow traversing the edge e

Table 4.1: Summary of notation used in model of tra ¢ engineering wh migration.

126

of network users that is, originators and receivers of trac, and N is the the set of
network nodesthat is, the routers/switches in the network. The term \users"here
refers to users of the network and not to end-users. In an ISRetwork, the set of
usersU represents routers in neighboring networks (\adjacent routsl) and the set
of network nodesN represents the routers in the ISP's internal network (\internal

routers").

User edges are potential links: To capture the ability to migrate, we introduce
the notion of potential links that represent the locations where the user capossibly
connect to the network. The edge seE is the union of two disjoint subsetsEy and
En, whereEy U N is the subset of edges connecting users to network nodes,
andEy N N is the subset of edges connecting network nodes to other netlwor
nodes. Each edge 2 Ey has capacityce 0, which measures the amount of ow
that can traverse edgee. We impose no capacity constraints on the edges ity (that
is, these edges have in nite capacity). We call the set of all edgés Ey that
connect useru 2 U to network nodes inN \the set of u's potential links" (that is,
8u2U,L,="fe=(u;v)je2 Eyg).

In ISP networks, the set of potential linksL, for each adjacent router (user)u
represents the points at whichu can connect to the ISP network. This can, in practice,
depend on the underlying transport network that can, for examp, limit a user to
connecting only to network nodes in nearby geographical regiong addition, the
set of potential links can re ect latency considerationse.g, it is bene cial to home

frequently-communicating users near each other.

Demand matrix is user-to-user: Our model distinguishes network users from
network nodes, and our demand matrix captures this distinction; & are now given
a demand matrixD = fd; gij 2u, where each entryd; speci es the amount of tra c

user i wishes to senduser .

127

Each user must use a single potential link: The high-level goal is, for every pair
of usersi andj such thatd; > 0, to distribute ow from i to j between the routes
fromi to j in G, subject to the constraint that every user can only connect tohe
network via a single link. That is, for every useru 2 U, trac owing from that
user to the other users, and vice versa, can only traverse a singlige inL; trac
along all other edges in., must be 0. When optimizing the ow of tra ¢ through

the network we can again consider the TLU minimization objective.

4.8.3 Practical Considerations

Naturally, our formal framework does not capture all the consaints that could arise
in practice. We now present several such constraints and discussw these can
be incorporated into our model. We leave these as interesting dirgwis for future

research.

Cost of migration. Our framework does not model the cost of migration (in terms
of processing, o ine time, and more) yet this is expected to be a caideration in
practice (we present some indication of the impact of this cost, bed on experiments
with Internet2 data, in Section 4.8.8. We can incorporate that cost into our model
as follows. The input will include, in addition to the other componentsan edge
g 2 Ly, for every useru 2 U, that represents the link that useru is currently using
to connect to the network, and also costs associated with changireach useru's

current connection edge to other edges in,.

Router limitations. Other practical considerations are the physical limitations of
the individual vertices in the network, including the number of links tlat each vertex
can support, and also the capacity of the node (in terms of pros#sg, memory, band-

width, etc.). This can be incorporated into our model through additional congints

128

(e.g, limits on the number of incoming links per node, node-capacity funons de-

pendent on incoming tra c amount, etc.).

Multi-homed users. We did not model the case that users are multi-homed, that is,
that users connect to the network at more than one location. Thiglters our constraint
that a single potential link must be chosen per user. To incorporattis into our
model we can introduce a variable for each userthat speci es how many links in
L, that user is allowed to send/receive tra c along. It also adds the canplexity that
changing the ingress point may alter the egress pointé., \hot-potato routing” [97)),
thus changing the tra ¢ matrix beyond the change introduced with migration. The
design and evaluation of heuristics/algorithms for this more gendranvironment is

left for future work.

4.8.4 The Max-Link Heuristic

Determining which edge links to migrate requires new algorithms thatocnplement
traditional tra c engineering algorithms. We present a simple heuriic, that we
term the \ max-link heuristic", which uses a multicommodity ow solution to guide
the choice of a potential link for each user (which determines whiclidge links need
to migrate).

The max-link heuristic rst computes the multicommodity ow in the inp ut net-
work that contains all potential links. Then, the heuristic uses this \fully fractional”
ow (where users' tra ¢ can be split between all of their potential links) to choose a
single potential link for each user, thus constructing a feasible (\integl") solution.
To do this, the max-link heuristic discards, for every usem 2 U, all potential links in
L, but the single potential link which carries the most tra c in the multico mmodity
ow solution (breaking ties arbitrarily).

The max-link heuristic consists of these three steps:

129

Step I: Compute multicommodity ow f in the input network G (that con-
tains all potential links for each user) for the given demand matrio. That is,
compute the minimum-cost multicommodity ow for TLU minimization with -
out restricting users to sending and receiving tra c along a single pential
link. The multicommodity ow solution f tells us how much tra c every user
u sends and receives along each of the potential linkslin. We let t(l,) denote

the sum of tra c that user u sends and receives along the potential lirlk 2 L.

Step II: Use the most utilized potential link. Choose, for every user
u 2 U, a potential link for which t(l,) is maximized. (Migrate users' currently

connected link to the chosen potential link if necessary.)

Step I1l: Compute the multicommodity ow in the resulting ne twork
that is, in the network obtained through the removal fromG of all potential
links but those chosen above. The max-link heuristic outputs (1) #hchoice of a
single potential link for each user and (2) the optimal routing of tra subject

to these migration decisions.

4.8.5 Experimental Results on Internet2

We now present our experimental evaluation of the max-link heurist The goal of
this evaluation is to demonstrate the bene ts of using migration in t& ¢ engineering,
even with a simple heuristic. We rst show in Sectiort.8.6that our max-link heuristic
does indeed lead to an improvement in network performance. We thexamine two
additional concerns relating to more practical questions { how a#h do links need to

be migrated (Sectior4.8.7) and how many links need to be migrated (Section.8.9.

130

We based all of our experiments on data collected from InternetZ(], which
consists ofN = 9 core routers andU = 205 external routers. We collected one week
of data starting January 18, 2010. From each router, we downlded the previously
collected NetFlow data which provides summaries of the sampled owat the rate
of 1/100 packets) in 5-minute intervals (1-week of tra c is 2016 Swninute samples).
We also downloaded the routing information base (RIB) and the outg for the "show
bgp neighborcommand, both of which are captured every two hours. Every Nieow
entry contains the incoming interface, which we used to represean external source
user. We used the routing tables for each of the routers to deteine the egress
router for each ow, along with the specic interface on the egresrouter that the
ow exits the network on, which we used to represent the exterhalestination user.

This enabled us to generate an external-user-to-external-ugea ¢ matrix.

4.8.6 Migration Improves Network Utilization

The rst metric of importance is simply the improvement that can be dtained when
utilizing link migration. Our results for a single 5-minute period appearsn Fig-
ure 4.14 This particular interval was chosen as it represents the averageerfor-
mance, which we discuss later in this subsection. The Figure showsuks for the
original (optimally engineered) network (the \original topology" line), and for tra c
engineering with migration with 2 links per user (the \optimized topolog" line)®.
Our choice of the set of potential links (theL,'s) in the experiments was based on
geographical distance, with the users' locations inferred from wah router they are

connected to in the original topology { e.g., some users connectedGhicago would

SDetermined from examining BGP information as well as tra ¢ traces { in reality, we may have
been missed an externally connected router or we may have includeal router that is not externally
connected.

SWe do not present results for more potential links per-user, as in or small topology almost
every two users end up connected to a common network node whehere are many potential links,
and thus tra c between these users does not traverse the netwrk at all. To elaborate, consider
the extreme case in which all users have potential links to all routes. Here, a multicommodity ow
solution will give no guidance on which links to use since no tra ¢ will even traverse the network.

131

Figure 4.11: Evaluation of max-link for a single 5-minute period.

have New York as a second potential link (in addition to Chicago), o#rs would have
Kansas as a second potential link.

In the max-link heuristic, in Step | we calculate the TLU minimizing multican-
modity ow of a graph which includes the potential links. The input is a pediction
of what the expected demands will be so that a new topology can bgtionized for it.
For this experiment, we utilized the actual demand matrix, in essercgiving perfect
predictive power. We rely on an ISPs ability to predict tra c based onpast history.

To obtain the graph in Figure 4.14 we varied the tra c demand by scaling all
entries by a multiplicative factor, plotted on the x-axis, and optimize for the TLU
for each. TLU minimization captures the goal of avoiding congestiprand involves
an exponentially increasing cost for utilizing a link (see Sectiof8.2. We used the
cost function from (9] as detailed in Section4.8.1

Due to the exponentially increasing cost, the network operator willvish to be
at a point in the curve that comes before the exponential rise, thas, before the
\knee" in the curve. Observe that this \knee" shifted to the right by roughly 20%,
and so, with migration, the network can handle 20% more tra ¢ with the same level

of congestion.

132

As mentioned, the particular 5-minute interval was chosen as it repsents the
average case performance. To expand on this, we present in Fgdrl2 and Figure
4.13the results for all 2016 5-minute intervals. In Figuret.12 we show a time-series
representation where each data point represents the improvemechieved with link
migration. We de ne this improvement metric as the amount of tra ¢ the network
can carry in the optimized topology at the same level of congestiors @éhe original
topology { where the TLU represents the level of congestion. Stypm the original
topology, we found the minimal TLU with a demand multiple of 1 (e.g., theactual
amount of trac). We then determined which demand multiple in the optimized
topology (i.e., with migration) would result in the same TLU. In other wads, in terms
of the graph in Figure4.11, we found the y value for x=1 on the original topology
line, and used that y value to nd the x value on the optimized topologyine. Plotted
in Figure 4.13is a cumulative distribution function of the same information.

From this we can see on average, tra ¢ engineering with migration caincrease
network utilization by about 18.8%. Intuitively this comes from two factors. The rst
is that by optimizing the homing locating based on the demand matrix, sers that
communicate will tend to get closer together. Without link migration,the homing
location must be determined up front and then cannot change. Withnk migration,
we can alter the topology to bring users that communicate a lot closeogether.
The second factor is that by re-optimizing the topology, we can hava signi cant
impact on congested links. By giving some tra c the ability to avoid the congested
link (through migration), we can reduce the congestion on that link. There are,
however, a small number of cases (2.6%) where migrating links adtyadecreased
performance. Being a simple heuristic, there are no worst case gardees with our
max-link heuristic, and so it is expected that there can be conditionshich result in

poor performance.

133

Figure 4.12: Evaluation of max-link over 7 days of tra ¢ { time-series

Figure 4.13: Evaluation of max-link over 7 days of tra ¢ { cumulative distribution
function.

4.8.7 Frequent Migration is Not Necessary

In Section 4.8.6 we examined the bene ts of utilizing link migration in tra ¢ engi-
neering. We looked at the bene ts when we could migrate every int&l and knew
the tra c in the next interval. However, predicting this can be di cu It on that short
of a time scale. Here, we examine how frequent we really need to be natiigg.

To determine how frequent migration should occur, we looked at dirent periods
{ every 5 minutes, 30 minutes, 1 hour, 6 hours, 12 hours, 24 hoursVe utilized a
prediction of the average demand matrix for the next interval (e.gthe next 6 hours)
when computing the multicommodity ow as per Step | in the max-link heristic.

This was used to determine the optimized topology that would be usddr the entire

134

interval | min | max | mean| #worse (frac.)

5mins | 0.783] 1.55] 1.188] 54 (0.0267)
30 mins | 0.757| 1.55| 1.166| 146 (0.0724)
1 hour |0.777| 1.55| 1.163| 152 (0.0753)
6 hours | 0.801| 1.55| 1.149| 182 (0.0902)
12 hours| 0.856| 1.55| 1.141| 191 (0.0947)
24 hours| 0.806| 1.55| 1.083| 465 (0.2306)

Table 4.2: Comparison of the improvement over the original topologyptimized for
routing only when performing grafting at di erent intervals (over 7 days tra c).
interval. We determined the TLU for each 5-minutes of tra ¢ using this topology
and compared the results to the original topology.

Shown in Table4.2, are the results for the di erent intervals { showing the data
point with the worst performance, the best performance (cappleat 1.55 due to run
time of the experiment), the average performance, and the numb (and fraction) of
data points which were worse. As could be expected, the longer theerval, the
worse the results. However, even re-optimizing the topology eye6 or 12 hours
still has good performance. Not only does utilizing longer intervals tdown on any
overhead of the migration itself (including calculating what to migratg but it also
has the advantage that as the intervals become longer, tra c patrns smooth out

and become more predictable.

4.8.8 Only a Fraction of Links Need to be Migrated

Our formulation of tra ¢ engineering with migration does not currently incorporate
the cost of migration, yet this is expected to be a consideration in pactice. To decide
which users to migrate, we can weigh the cost of migrating a user agst the gain
from migrating that user; when the impact of migrating a user is lowd.g, when
that user generates and consumes negligible amounts of tra c), igration might be

undesirable.

135

Figure 4.14: Fraction of tra ¢ each user node sends in an examplerBinute period.

To investigate this, we plotted in Figure 4.14 the amount of tra c each user
sends or receives for an example 5-minute interval. On the x-axis l&etindex of the
user, sorted by the amount of tra c they generate/consume. @ the y-axis is the
cumulative fraction of the total tra c. We placed markers on eachuser for which our
max-link heuristic determined should be migrated.

From this we can see that 85% of the trac comes from the rst 42 gers, of
which, max-link only determined 5 of them to be migrated. Hence, weac still
obtain a signi cant improvement in network performance while migrahg only a
small number of links.

To evaluate this e ect across the entire data sample, we plot the owlative dis-
tribution functions of the number of links that need to be migrated onsidering three
di erent thresholds { 100% (i.e., migrate all links that max-link determned need to
be migrated), 95%, and 90%. As can be seen, by not worrying ab@usmall fraction
of tra ¢ (which only minimally a ect the actual network utilization), w e can greatly

reduce the number of links that need to be migrated.

136

Figure 4.15: Cumulative distribution function of the number of links tlat need to be
migrated during each interval over 7 days of tra ¢ (2016 5-minuteintervals). Shown
are three lines corresponding to di erent thresholds { only links in te top X% of
tra c are migrated.

4.9 Related Work

High availability and ease of network management are goals of manyssyms, and
therefore router grafting has much in common with them. In partiglar, ones that
attempt to minimize disruptions during planned maintenance. One psgility is to
recon gure the routing protocols such that tra ¢ will no longer be sent to the router
about to undergo maintenance 93, 57). Alternatively, others have decoupled the
control plane and data plane such that the router can continue téorward packets
while the control plane goes o -line (e.g., rebootedP3, 37]. However, unlike router
grafting, these require modi cations to the remote end-point roter and they are only
useful for temporarily shutting down the session on a given physiceouter, rather
than enabling the session to come back up on a di erent router as iuter grafting.
In this regard, router grafting shares more in common with VROOM4s discussed
in Chapter 3), which makes use of virtual machine migration to ease network man

agement. Maintenance could be performed without taking down theouter simply

137

by migrating the virtual router to another physical router. This requires the two
physical routers to be compatible (running the same virtualization dchnology), a
limitation router grafting does not have. In fact, router grafting does not rely on
virtual machine technology. Kozuch showed the ability to migrate whout the use of
virtualization [73], but did so at the granularity of the entire operating system and all
running processes. With a coarse granularity, the physical routevhere the virtual

router is being migrated to must be able to handle the entire virtualouter's load.

Router grafting is also similar to the RouterFarm work [4], which targeted re-
homing a customer. However, it required restarting the sessionais more disruptive
than router grafting. Along similar lines, high-availability routers endle switching
over to a dierent router or blade in a router [3]. This, however, is done either
through periodically check-pointing, which preserves the memory age, or running
two complete instances of the router software concurrently, wdh is an ine cient use
of resources.

While we presented router grafting in the context of a BGP sessiome envision
it being more general. Along these lines, partitioning the pre x spacacross multiple
routers or blades is a possibility.ViAggre 19 partitions the pre x space across multi-
ple routers, however it is a static architecture not one which dynaieally repartitions
the pre x space as router grafting could.

Finally, we made use of TCP socket migration to handle change or digtion in
end-points. One alternative is to modify the TCP protocol to includethe ability to
change IP addresse<{]. Since the IP address of the end-points in router grafting
can remain the same, we do not need this capability, but could makeeusf it.

In terms of our application of router grafting to trac trac engin eer-
ing, there has been much work on schemes for trac engineering iIrSP net-

works [LO[63][43[1E][109. This work interprets tra ¢ engineering as the adaptation

138

of the routing of tra ¢ within the network so as to optimize performance. We, in
contrast, also explore how to adapt tra c's ingress and egress points.

Changes to the tra ¢ matrix can also result from actions of the uses themselves
(e.g., using overlay routing to route around congested areas, as in Datg97] and
RON [17]). However, such \sel sh" overlay routing can, as pointed out in{Z], signif-
icantly reduce the e ectiveness of tra ¢ engineering (as it lies outsle the control of
the ISP network operator). Interestingly, as these overlays ghthe tra c, migration
could be used to better handle the tra ¢ within the ISPs network.

Migration in the ISP context has received but little attention. Mechalisms for
the re-home of customers have been introduced 4], but the implications for tra c

engineering has not been studied.

4.10 Summary

Router grafting is a new technique that opens many new possibilitieerfmanaging
a network. It does this by enabling, without disruption, the migration of a routing
session between (i) physical routers, (ii) blades in a cluster routesind (iii) routers
from di erent vendors. We were able to do this while being transparg to the remote
end-point. We handled the changes in topology through incrememtapdates, only
sending out the necessary updates to convey the dierence. laompantly, we did
not a ect the correctness of the network as the data plane will etinue to forward
packets and routing updates do not cause the migration to be alied. Through the
development of new algorithms and evaluation with real tra c, we denonstrated the
applicability of router grafting to tra ¢ engineering. Not only can router grafting

simplify existing network management tasks, but it can also enable weapplications.

139

Chapter 5

Conclusion

The Internet is becoming a more integral part of people's daily life { arend that
will undoubtedly continue into the future. In order to run the undelying infrastruc-
ture, network operators continuously need to make changes tbe network { e.g.,
add routers, change policies, and manage available resources agbhandwidth. Un-
fortunately, these changes causes disruption. In this disseriah we take a novel
approach to addressing this disruption by refactoring the routesoftware to better
accommodate change. In this chapter we present a summary oethontributions in
Section5.1 We then present a uni ed architecture which combines the threeystems
presented in this dissertation in Sectiorb.2. We discuss some directions for future

work in Section5.3 and wrap up with some concluding remarks in Sectiob.4.

5.1 Summary of Contributions

This dissertation proposes a refactoring of router software in@er to provide a more
reliable network.

First, we tailored software and data diversity (SDD) to the unique poperties of
routing protocols, so as to avoid buggy behavior at run time. Our lmstolerant router

executes multiple diverse instances of routing software, and useging to determine
140

the output to publish to the forwarding table, or to advertise to néghbors. We
designed and implemented a router hypervisor that makes this pdielism transparent
to other routers, handles fault detection and booting of new roet instances, and
performs voting in the presence of routing-protocol dynamics, ithout needing to
modify software of the diverse instances. Experiments with BGP ragage traces and
open-source software running on our Linux-based router hypgsor demonstrated
that our solution scales to large networks and e ciently masks buggbehavior.

Second, we argued that breaking the tight coupling between the ydical and
logical con gurations of a network can provide asingle general abstraction that
simpli es network management. Speci cally, we proposed VROOM (Viual ROuters
On the Move), a new network-management primitive where virtualguters can move
freely from one physical router to another. We presented the sign, implementation,
and evaluation of novel migration techniques for virtual routers ith either hardware
or software data planes. Our evaluation showed that VROOM is traparent to
routing protocols and results in no performance impact on the dataa c when a
hardware-based data plane is used.

Finally, we introduced the concept of router grafting, and realizerainstance of
it through BGP session migration. This capability allows an operator taehome a
customer with no disruption, compared to downtimes today meased in minutes.
We demonstrated that BGP session migration can be performed inday's mono-
lithic routing software, without much modi cation or refactoring of the code. We
also demonstrated that with our architecture, BGP session migrein can be per-
formed (i) transparently, where the remote BGP session end-poiis not modi ed
and is unaware migration is happening, (ii) with minimal impact on other outers
not directly involved in the migration, and (iii) such that unplanned rouing changes
(such as link failures) during the grafting process do not a ect coectness, and where

packets are delivered successfully even during the migration. Wedatbnally applied

141

router grafting to tra c engineering where not only can network @erators control
how tra ¢ ows through the network, but now can also control where tra c enters

and exits the network. We developed a new algorithm to determine &hlinks to mi-

grate and through an evaluation using real tra c traces from Inernet2 showed that
signi cant improvements in the utilization of the network can be achieed through
router grafting.

A commonality among each of our solutions is that rather than solving problem
on top of the existing system, we changed the system to make theoplem go away
fundamentally. With the bug-tolerant router, rather than test, debug, and analyze
router software to reduce bugs, we changed the platform to toége the bugs. With
VROOM, rather than extend protocols and management practiceotminimize disrup-
tion, we utilized virtualization in the routers to decouple the logical IRlayer topology
from the physical topology. With router grafting, rather than exend protocols, or be
forced to settle for coarse-grain migration, we made individual rting sessions mi-
gratable. With our application of router grafting to tra c engineering, rather than
focusing on optimization of routing on a xed tra ¢ matrix, we utilized a mechanism
which enables us to change the tra ¢ matrix.

Collectively, by taking a unique approach, the contributions of this dsertation
enable network operators to perform the desired change on theetwork without (i)
possibly triggering bugs in routers that causes Internet-wide insbility, (i) causing
unnecessary network re-convergence events, (iii) having to cdioate with neigh-
boring network operators, or (iv) needing an Internet-wide upgde to new routing

protocols.

142

5.2 A Unied Architecture

Individually, the bug-tolerant router, VROOM, and router grafting each provide an
improved router architecture which better accommodates chageg in networks. Ide-
ally, however, we want all of these to be realized in a single router. \léa we proto-
typed each system independently, there is a clear path to a singlei@a architecture.
As illustrated in Figure 5.1, at a high level each of the bug-tolerant router instances
can support router grafting, and each VROOM virtual router canbe a bug-tolerant

router.

Figure 5.1: Uni ed architecture.

However, it is not a completely clean separation as there are subtldaractions
that need to be addressed. To understand this, we'll rst recapilate the main

modi cations to router software needed for each:

VROOM : The VROOM hypervisor is based o of virtual machine technology
to enable migration of the control plane state and processes. TR&ROOM hy-
pervisor supports the data plane migration process through dafadane cloning.
Data plane cloning involves the VROOM hypervisor (i) making a requegb the

control plane to repopulate the forwarding table and (ii) sending anforward-
143

ing table updates to both the local forwarding table and the remotéorwarding

table.

BTR : The BTR hypervisor allows multiple processes to run simultaneously
and virtualizes their interface at the socket level, but does not pwide complete
platform virtualization. The BTR hypervisor (i) intercepts input messages and
multicasts them to each instance, (ii) intercepts output messagesd performs
voting on them before sending out the update, and (iii) manages rtar instances

with the ability to bootstrap new instances and kill buggy instances.

Router grafting : Router grafting requires modi cations to the router soft-
ware to enable the importing and exporting of state, and re-runng decision
processes based on the new state. Router grafting also requiopgrating sys-
tem functionality in order to support the importing and exporting of the state

for individual TCP sessions.

From this, we can see that each of the possible interactions requireome modi -

cation in order to provide a complete, uni ed system:

VROOM $ BTR : VROOM needs to be able to make a request to the virtual
router to repopulate the forwarding table. This is an interface we dd to add
to the routing software and therefore the BTR hypervisor need$ present
this interface. The routing software will still need this interface, ad will use
the modi cations we made originally to enable VROOM. The BTR hypervisr
could then simply forward the request from the VROOM hypervisord each of
the router instances. They would each repopulate the forwardingble, which
would trigger the BTR hypervisor to vote on each entry before wrihg the result

to the forwarding table.

VROOM $ Router grafting : Router grafting needs modi cations to the

operating system to be able to import/export all of the TCP sessiostate that
144

is associated with a given socket. The operating system that is prding the
socket interface to the routing software processes will need tave this capa-
bility. In a container based virtualization solution (e.g., OpenVZ), as w used
in our VROOM prototype, the virtual router does not have its own @erating
system { it shares one with all of the other virtual routers. In a pl&#orm vir-

tualization solution (e.g., Xen, KVM, VMWare), the virtual routers will each

have their own operating system.

BTR $ Router grafting : With router grafting, the router software also had
modi cations to be able to import and export a socket. In the bug-dlerant
router, the routing software actually has sockets that provide aommunication
channel to the BTR hypervisor and the BTR hypervisor has the sdéets that
provide a communication channel to neighboring routers. The roimg software
would not need to change as the communication channel to the BTRyfhervisor
was hidden from the routing software. The BTR hypervisor would rexd the
ability to import and export a socket, and in turn, trigger an import or export
in each of the instances. In addition to importing and exporting a s&et, with

router grafting the routing session state is also imported and exged along
with re-running decision processes based on the updated stateitMthe bug-

tolerant router, there are multiple instances. Therefore, the BR hypervisor
would need to export the state from each instance at the migrafieem router,

vote on that state, and then at the migrate-to router import tha state in each
of the instances. The process will still be transparent to neighbiag routers,
but as is the case with a bug-tolerant router, with multiple instanceshere will

be more processing to perform a session migration.

145

5.3 Future Work

In addition to building the uni ed architecture, each individual system has directions

for future research. Here, we examine a few of these.

5.3.1 Monitoring in Addition to Voting for a Bug-Tolerant

Router

With the bug-tolerant router we perform voting among multiple instances of routing
software performing the same functionality to detect and corré@any bugs. A buggy
instance of the software can be rebooted or replaced. A complet@ey approach
would be to utilize techniques which perform anomaly detection on theun-time
characteristics of the software itselfg6] { e.g., memory utilization, CPU utilization,
latency. By detecting something is going wrong (e.g., CPU utilization ispging
without a ood of updates to process) we may be able to catch buggnstances
before they become faulty. This proactive correction of instansewill lead to a more

reliable system.

5.3.2 Hosted and Shared Network Infrastructure with

VROOM

In the world of computing, a shift has begun towards the use of irdgstructures which
are hosted and shared (i.e., cloud computing). This has increasectlevel of innova-
tion by enabling companies to come out with new web services for lesstc created
new business models where a party can lease out slices of serverdemnand with a
pay-per-use model, and even simpli ed management in private (ndrested) networks
by enabling a company to more easily run independent services on itsroservers.

We believe that the same will be true of networking where many applitans would

146

greatly benet from in-network functionality beyond the basic comectivity o ering
of today.

A key challenge that these infrastructures present is that theyatouple the owner
of the infrastructure from the service provider that is running tke routing protocols
and applications. Not only would planned maintenance be disruptive san networks
today, but techniques which lessen the impact (e.g., diverting tra caway) are no
longer possible since these are two di erent parties. VROOM providea solution
here as it decouples physical from logical, so physical maintenanes de done with-
out impacting logical. Isolation is also important, which has been exaned in the
computing context [66], as well as the virtual router context PZ]. We view a router

as more than just routing protocols, so both will be relevant.

5.3.3 Router Grafting for Security

Router grafting is a mechanism to seamlessly move links and the asated BGP
session. This not only aids in today's network management, it enablesw applica-
tions. We applied router grafting to tra ¢ engineering, but there may be other novel
uses of the technology that are worth exploring. One promising aligation area is
to use router grafting as part of a \moving-target" defense méanism [3. Static
systems allow attackers to observe the operation of the systemeo long periods of
time and plan attacks with con dence. With a moving-target defens, the system is
continuously changed so that the planned attack will no longer workBy utilizing

router grafting, we can continuously change the topology and chge which router

(di erent vendors, di erent models) a particular neighboring network is connected to.

147

5.4 Concluding Remarks

The Internet is becoming critical infrastructure. As such, we neka network infras-
tructure that we can depend on. We took an approach which doeonrequire an
Internet-wide upgrade, yet improved the reliability of the network By rethinking the

design of routers, we enable network operators to manage theetworks without trig-

gering much of the disruption that is seen today when performing ih management.
We utilized software and data diversity to build a router which operags correctly
even in the inevitable presence of bugs. We introduced novel migat mechanism,
both at the granularity of a virtual router and at the level of an indvidual link and

associated routing session. Not only does this migration simplify togla management
tasks, it also enables new applications as well.

Perhaps most importantly, we have shown that signi cant improverants can be
made without having to wipe the slate clean in the Internet. We do thiby capital-
izing on recent trends in networks and routers to rethink the rowdr design to better
accommodate the changes network operators routinely need tcake. We believe
that our work is an important step towards a more reliable Internetand provide a
novel approach to challenges faced in network management. Finalllyis work raises
interesting questions about what exactly a router is, and the varis ways routers can

be \sliced and diced." We plan to explore these questions in our ongoiagrk.

148

Bibliography

[1] BIRD Internet routing daemon. http://bird.network.cz/

[2] Cisco 7200 simulator. (software to run Cisco IOS images on degktPCs) www.
ipflow.utc.fr/index.php/Cisco_7200_Simulator

[3] Cisco 10S high availability curbs downtime with faster reloads and
upgrades. http://www.cisco.com/en/US/products/ps6550/prod_whi te_
papers_list.html

[4] Olive. (software to run Juniper OS images on desktop PCg)niper.cluepon.
net/index.php/Olive

[5] OpenVZ. http://www.openvz.org

[6] Quagga software routing suitehttp://www.quagga.net
[7] Route views project.www.routeviews.org .

[8] Vyatta (open-source router vendor) www.vyatta.com.
[9] XORP: Open Source IP Router.http://www.xorp.org

[10] IETF draft: MRT routing information export format, July 2009. http:/
tools.ietf.org/id/draft-ietf-grow-mrt-10.txt .

[11] The Internet2 Network. http://www.internet2.edu/

[12] T. Aerton, R. Doverspike, C. Kalmanek, and K. K. Ramakrishran. Packet-
aware transport for metro networks. IEEE Communication Magazine March
2004.

[13] S. Agarwal, C. Chuah, S. Bhattacharyya, and C. Diot. Impaadf BGP dynamics
on router CPU utilization. In Passive and Active Measuremenipril 2004.

[14] Mukesh Agrawal, Susan Bailey, Albert Greenberg, Jorge Pastd®anagiotis
Sebos, Srinivasan Seshan, Jacobus van der Merwe, and Jennifztie¥. Router-
Farm: Towards a dynamic, manageable network edge. WCM SIGCOMM
Workshop on Internet Network Management (INM)September 2006.

149

[15] C. Alaettinoglu, V. Jacobson, and H. Yu. Towards millisecond IGBonvergence.
In IETF Draft , November 2000.

[16] R. Alimi, Y. Wang, and Y. R. Yang. Shadow con guration as a netark man-
agement primitive. In SIGCOMM, August 2008.

[17] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, drRobert Morris.
Resilient overlay networks. InProc. ACM SOSP, October 2001.

[18] D. Applegate, L. Breslau, and E. Cohen. Coping with network flares: Routing
strategies for optimal demand oblivious restoration. IfProc. ACM SIGCMET-
RICS, June 2004.

[19] Hitesh Ballani, Paul Francis, Tuan Cao, and Jia Wang. Making Roets Last
Longer with ViAggre. In Proc. of USENIX Symposium on Networked Systems
Design and Implementation April 2009.

[20] E. Berger and B. Zorn. DieHard: Probabilistic memory safety faunsafe lan-
guages. InProgramming Languages Design and Implementatipdune 2006.

[21] Massimo Bernaschi, Francesco Casadei, and Paolo TassottickBdi: a solution
for migrating TCP/IP connections. In Proc. Euromicro International Confer-
ence on Parallel, Distributed and Network-Based Procesgir2007.

[22] Sapan Bhatia, Murtaza Motiwala, Wolfgang Muhlbauer, Yogesh tdhdada, Vy-
tautas Valancius, Andy Bavier, Nick Feamster, Larry Peterson, rad Jennifer
Rexford. Trellis: A platform for building exible, fast virtual networ ks on com-
modity hardware. In Proc. Workshop on Real Overlays and Distributed Systems
(ROADS), December 2008.

[23] Olivier Bonaventure, Clarence FilslIs, and Pierre Francois. Achieng sub-
50 milliseconds recovery upon BGP peering link failuredEEE/ACM Trans.
Networking October 2007.

[24] Robert Braden. Requirements for Internet Hosts - Commuration Layers. RFC
1122, October 1989.

[25] B. Brenner. Cisco IOS aw prompts symantec to raise threat el. In Infor-
mation Security Magazine Sept. 2005.

[26] S. Bryant and P. Pate. Pseudo wire emulation edge-to-edgeVifE3) architec-
ture. RFC 3985, March 2005.

[27] J. Caballero, T. Kampouris, D. Song, and J. Wang. Would diversitreally
increase the robustness of the routing infrastructure againsbfware defects?
In NDSS Feb. 2008.

[28] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, dnK. van der
Merwe. Design and implementation of a routing control platform. INNSDI,
April 2005.

150

[29] M. Caesar and J. Rexford. Building bug-tolerant routers with ivtualization.
In PRESTO, August 2008.

[30] M. Castro and B. Liskov. Practical byzantine fault toleranceln OSDI, February
1999.

[31] Joe Chabarek, Joel Sommers, Paul Barford, Cristian Estamavid Tsiang,
and Steve Wright. Power awareness in network design and routingn IEEE
INFOCOM, 2008.

[32] E. Chen, R. Fernando, J. Scudder, and Y. Rekhter. GracéRestart Mechanism
for BGP. RFC 4724, January 2007.

[33] B-G. Chun, P. Maniatis, and S. Shenker. Diverse replication feingle-machine
byzantine-fault tolerance. INUSENIX Annual Technical Conference June 2008.

[34] Ciena CoreDirector Switch.http://www.ciena.com

[35] Cisco ASR 1000 series aggregation services router high availapiliDeliv-
ering carrier-class services to midrange routerhttp://www.cisco.com/en/
US/prod/collateral/routers/ps9343/solution_overview ~€22-450809
ps9343 Product_Solution_Overview.html .

[36] MPLS VPN Carrier Supporting Carrier.http://www.cisco.com/en/US/docs/
i0s/12_0st/12_Ostl4/feature/guide/csc.html

[37] Cisco Logical Routers. http://www.cisco.com/en/US/docs/ios_xr_sw/
iosxr_r3.2/interfaces/command/reference/hr32Ir.html

[38] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Haen, Eric Jul,
Christian Limpach, lan Pratt, and Andrew War eld. Live Migration of Virtual
Machines. INnNSDI, May 2005.

[39] B. Cox, D. Evans, A. Filip, J. Rowanhill, W. Hu, J. Davidson, J. Knidnt,
A. Nguyen-Tuong, and J. Hiser. N-variant systems: A secretlessamework for
security through diversity. In Usenix Security August 2006.

[40] Brendan Cully, Geo rey Lefebvre, Dutch Meyer, Mike Feeley, drm Hutchin-
son, and Andrew War eld. Remus: High availability via asynchronous ivtual
machine replication. INNSDI, April 2008.

[41] D-ITG. http://www.grid.unina.it/software/ITG/
[42] J. Duy. BGP bug bites Juniper software. InNetwork World, December 2007.

[43] A. Elwalid, C. Jin, S. Low, and |. Widjaja. MATE: MPLS adaptive trac
engineering. InProc. IEEE INFOCOM, 2001.

[44] Emulab. http://www.emulab.net

151

[45] J. Evers. Trio of Cisco aws may threaten networks. IlCNET News January
2007.

[46] N. Feamster and H. Balakrishnan. Detecting BGP con guratiorfaults with
static analysis. InNSDI, May 2005.

[47] N. Feamster and J. Rexford. Network-wide prediction of BGPoutes. In
IEEE/ACM Trans. Networking , April 2007.

[48] Nick Feamster, Lixin Gao, and Jennifer Rexford. How to lease éhinternet
in your spare time. ACM SIGCOMM Computer Communications ReviewJan
2007.

[49] Bernard Fortz and Mikkel Thorup. Internet tra c engineering by optimizing
OSPF weights. InProc. IEEE INFOCOM, 2000.

[50] Pierre Francois and Olivier Bonaventure. Avoiding transient logpduring the
convergence of link-state routing protocolslEEE/ACM Transactions on Net-
working, 15(6):1280{1932, December 2007.

[51] Pierre Francois, Pierre-Alain Coste, Bruno Decraene, and OliviBonaventure.
Avoiding disruptions during maintenance operations on BGP session$EEE
Transactions on Network and Service Management(3):1{11, 2007.

[52] Pierre Francois, Mike Shand, and Olivier Bonaventure. Disruptiofree topology
recon guration in OSPF networks. In I[EEE INFOCOM, May 2007.

[53] Anup K. Ghosh, Dimitrios Pendarakis, and William H. Sanders. Natiwal cyber
leap year summit 2009 co-chairs report: Moving target defenskttp://www.
ginetig-na.com/Collateral/Documents/English-US/InTh eNews_docs/
National_Cyber_Leap_Year_Summit_2009_ Co-Chairs_Reptpdf

[54] Joel Gottlieb, Albert Greenberg, Jennifer Rexford, and Jia Weay. Automated
provisioning of BGP customerslEEE Network Magazine November/December
2003.

[55] Timothy G. Grin and Joao Lus Sobrinho. Metarouting. In SIGCOMM,
August 2005.

[56] D. Gupta, S. Lee, M. Vrable, S. Savage, A. Snoeren, A. Vahd&. Varghese,
and G. Voelker. Dierence engine: Harnessing memory redundangy virtual
machines. INOSDI, December 2008.

[57] Maruti Gupta and Suresh Singh. Greening of the Internet. I'5IGCOMM,
August 2003.

[58] R. Hinden. Virtual router redundancy protocol (VRRP). RFC 3768, April
2004.

152

[59] G. lannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Dioteasibility of IP
restoration in a tier-1 backbone.l[EEE Network Magazinge Mar 2004.

[60] Internet2. http://www.internet2.org

[61] Juniper Logical Routers. http://www.juniper.net/techpubs/software/
junos/junos85/feature-guide-85/id-11139212.html

[62] F. Junqueira, R. Bhgwan, A. Hevia, K. Marzullo, and G. Voelker.Surviving
Internet catastrophes. InHotOS, May 2003.

[63] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightope: Re-
sponsive yet stable tra ¢ engineering. InProc. SIGCOMM, 2005.

[64] Ethan Katz-Bassett, Harsha V. Madhyastha, John P. JohnArvind Krishna-
murthy, David Wetherall, and Thomas Anderson. Studying black hoke in the
internet with hubble. In Proceedings of the 5th USENIX Symposium on Net-
worked Systems Design and ImplementatioNSDI'08, 2008.

[65] Eric Keller, Jennifer Rexford, and Jacobus van der Merwe. Sekess BGP
session migration with router grafting. InProc. Networked Systems Design and
Implementation, 2010.

[66] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. LeBloHype: Virtual-
ized cloud infrastructure without the virtualization. In International Symposium
on Computer Architecture June 2010.

[67] Eric Keller, Minlan Yu, Matthew Caesar, , and Jennifer Rexford.Virtually
eliminating router bugs. In CONEXT, Dec 2009.

[68] Z. Kerravala. Con guration Management Delivers Business Résncy. The
Yankee Group, November 2002.

[69] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June AndronickDavid Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Midael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: Foan
veri cation of an os kernel. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSR)2009.

[70] J. Knight and N. Leveson. A reply to the criticisms of the Knight &Leveson
experiment. ACM SIGSOFT Software Engineering NotesJanuary 1990.

[71] W. Knight. Router bug threatens 'Internet backbone'. InNew Scientist Maga-
zine, July 2003.

[72] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek. Te Click
modular router. In ACM Trans. Comp. Sys, August 2000.

153

[73] Michael A. Kozuch, Michael Kaminsky, and Michael P. Ryan. Migtion with-
out virtualization. In Proc. Workshop on Hot Topics in Operating Systems
May 2009.

[74] A. Kuatse, R. Teixeira, and M. Meulle. Characterizing networkwents and their
impact on routing. In CONEXT (Student Poster), December 2007.

[75] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson,. Shenker, and
I. Stoica. Achieving convergence-free routing using failure-cgiing packets. In
SIGCOMM, August 2007.

[76] A. Markopoulou, G. lannaconne, S. Bhattacharrya, C-N. Glah, and C. Diot.
Characterization of failures in an IP backbone. IREEE/ACM Trans. Network-
ing, Oct. 2008.

[77] Marvin McNett, Diwaker Gupta, Amin Vahdat, and Georey M. Voelker.
Usher: An extensible framework for managing clusters of virtual achines. In
USENIX Large Installation System Administration Conferewe (LISA), Novem-
ber 2007.

[78] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Path splicqn In
SIGCOMM, 2008.

[79] NetFPGA. http://lyuba.stanford.edu/NetFPGA/

[80] A. O'Donnell and H. Sethu. On achieving software diversity for iproved net-
work security using distributed coloring algorithms. InACM CCS, October
2004.

[81] Average retail price of electricity. http://www.eia.doe.gov/cneaf/
electricity/epm/table5 6_a.html

[82] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. Sel sh routing innternet-like
environments. InProc. SIGCOMM, 2003.

[83] R. Rajendran, V. Misra, and D. Rubenstein. Theoretical bows on control-
plane self-monitoring in routing protocols. INSIGMETRICS, June 2007.

[84] M. Reardon. Cisco o ers justi cation for Procket deal. June Q04. http://
news.cnet.com/Cisco-offers-justification-for-Procke t-deal/
2100-1033_3-5237818.html.

[85] Y. Rekhter and T. Li. A border gateway protocol 4 (bgp-4). RC 1771, March
1995.

[86] Renesys. AfNOG takes byte out of Internethttp://www.renesys.com/blog/
2009/05/byte-me.shtml .

[87] Renesys. House of cards. http://www.renesys.com/blog/2010/08/
house-of-cards.shtml

154

[88] Renesys. How to build a cybernukehttp://www.renesys.com/blog/2010/
04/how-to-build-a-cybernuke.shtml

[89] Renesys. Longer is not always bettenttp://www.renesys.com/blog/2009/
02/longer-is-not-better.shtml

[90] A. Rostami and E.H. Sargent. An optical integrated system famplementa-
tion of NxM optical cross-connect, beam splitter, mux/demux andccombiner.
[JCSNS International Journal of Computer Science and Networ&ecurity, July
2006.

[91] Kurt Roth, Fred Goldstein, and Jonathan Kleinman. Energy Cosumption by
O ce and Telecommunications Equipment in commercial buildings Volumd:
Energy Consumption Baseline. National Technical Information Seice (NTIS),
U.S. Department of Commerce, Spring eld, VA 22161, NTIS NumberPB2002-
101438, 2002.

[92] Stefan Savage, Tom Anderson, Amit Aggarwal, David Becker,eldl Cardwell,
Andy Collins, Eric Ho man, John Snell, Amin Vahdat, Geo Voelker, and John
Zahorjan. Detour: A case for informed Internet routing and trasport. IEEE
Micro, January 1999.

[93] Aman Shaikh, Rohit Dube, and Anujan Varma. Avoiding instability diring
graceful shutdown of multiple OSPF routers.IEEE/ACM Trans. Networking ,
14(3):532{542, June 2006.

[94] Alex Snoeren and Hari Balakrishnan. An end-to-end approath host mobility.
In Proc. ACM MOBICOM, Boston, MA, August 2000.

[95] Mobeen Tahir, Mark Ghattas, Dawit Birhanu, and Syed Natif Nawz. Cisco
IOS XR Fundamentals Cisco Press, 20009.

[96] Yongmin Tan and Xiaohui Gu. On predictability of system anomalieg real
world. In 18th Annual Meeting of the IEEE International Symposium on d-
eling, Analysis and Simulation of Computer and Telecommugation Systems
(MASCOTS 2010), 2010.

[97] R. Teixeira, T. Grin, A. Shaikh, and G. Voelker. Network sensitivity to hot-
potato disruptions. In Proc. SIGCOMM, 2003.

[98] Renata Teixeira, Aman Shaikh, Tim Grin, and Jennifer Rexford. Dynamics
of hot-potato routing in IP networks. In SIGMETRICS, June 2004.

[99] J.E. van der Merwe and I.M. Leslie. Switchlets and dynamic virtuaATM
networks. In Proc. IFIP/IEEE International Symposium on Integrated Network
Management May 1997.

[100] VINIL. http://www.vini-veritas.net/

155

[101] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang, ah Al-
bert Greenberg. COPE: Tra c engineering in dynamic networks. InProc.
SIGCOMM, 2006.

[102] L. Wang, D. Massey, K. Patel, and L. Zhang. FRTR: A scalable @hanism to
restore routing table consistency. IDSN, June 2004.

[103] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Réxrd. Vir-
tual Routers on the Move: Live Router Migration as a Network-Maagement
Primitive. In SIGCOMM, August 2008.

[104] John Wei, K.K. Ramakrishnan, Robert Doverspike, and JorgeaBtor. Con-
vergence through packet-aware transportlournal of Optical Networking 5(4),
April 2006.

[105] B. White, J. Lepreau, L. Stoller, R. Ricci, G. Guruprasad, M. Bwbold, M. Hi-
bler, C. Barb, and A. Joglekar. An integrated experimental envinament for
distributed systems and networks. InNOSDI, December 2002.

[106] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and lslzin Yousif.
Black-box and Gray-box Strategies for Virtual Machine Migration. In NSDI,
April 2007.

[107] Z.Yin, M. Caesar, and Y. Zhou. Towards understanding bugsrouter software.
In ACM SIGCOMM Computer Communication ReviewJune 2010.

[108] A. Yumerefendi, B. Mickle, and L. Cox. Tightlip: Keeping applicabns from
spilling the beans. InNNSDI, April 2007.

[109] C. Zhang, Z. Ge, J. Kurose, Y. Liu, and D. Towsley. Optimal rting with
multiple tra ¢ matrices: Tradeo between average case and worstase perfor-
mance. InProc. International Conference on Network ProtocolsNov. 2005.

[110] Y. Zhang, S. Dao, H. Vin, L. Alvisi, and W. Lee. Heterogeneounetworking: A
new survivability paradigm. In New Security Paradigms Workshq@September
2008.

[111] Y. Zhou, D. Marinov, W. Sanders, C. Zilles, M. dAmorim, S. Lawdrburg, and
R. Lefever. Delta execution for software reliability. InHot Topics in Depend-
ability, June 2007.

156

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Change Happens
	1.1.1 Equipment Failure
	1.1.2 Planned Maintenance of Equipment and Software
	1.1.3 Updated Inter-domain Policy and Connectivity
	1.1.4 Changes to Optimize Resource Utilization
	1.1.5 Service Deployment and Evolution

	1.2 Change is Painful
	1.2.1 Because Routing Software is Distributed
	1.2.2 Because Routing Software is Complex
	1.2.3 Because Routing Software is Configurable

	1.3 Refactoring Router Software
	1.4 Router Trends

	2 Hiding Routing Software Bugs from Adjacent Routers with the Bug-Tolerant Router
	2.1 Introduction
	2.1.1 Challenges in dealing with router bugs
	2.1.2 The case for diverse replication in routers
	2.1.3 Designing a Bug-Tolerant Router

	2.2 Software and Data Diversity in Routers
	2.2.1 Diversity in the software environment
	2.2.2 Execution environment diversity
	2.2.3 Protocol diversity

	2.3 Bug Tolerant Router (BTR)
	2.3.1 Making replication transparent
	2.3.2 Dealing with the transient and real-time nature of routers

	2.4 Router Hypervisor Prototype
	2.4.1 Wrapping the routing software
	2.4.2 Detecting and recovering from faults
	2.4.3 Reducing complexity

	2.5 Evaluation
	2.5.1 Voting in the presence of churn
	2.5.2 Processing overhead
	2.5.3 Effect on convergence

	2.6 Discussion
	2.7 Related Work
	2.8 Summary

	3 Decoupling the Logical IP-layer Topology from the Physical Topology with VROOM
	3.1 Introduction
	3.2 Background
	3.2.1 Flexible Link Migration
	3.2.2 Related Work

	3.3 Network Management Tasks
	3.3.1 Planned Maintenance
	3.3.2 Service Deployment and Evolution
	3.3.3 Power Savings

	3.4 VROOM Architecture
	3.4.1 Making Virtual Routers Migratable
	3.4.2 Virtual Router Migration Process

	3.5 Prototype Implementation
	3.5.1 Enabling Virtual Router Migration
	3.5.2 Realizing Virtual Router Migration

	3.6 Evaluation
	3.6.1 Methodology
	3.6.2 Performance of Migration Steps
	3.6.3 Data Plane Impact
	3.6.4 Control Plane Impact

	3.7 Migration Scheduling
	3.8 Summary

	4 Seamless Edge Link Migration with Router Grafting
	4.1 Introduction
	4.1.1 A Case for Router Grafting
	4.1.2 Challenges and Contributions

	4.2 BGP Routing Within a Single AS
	4.2.1 Protocol Layers: IP, TCP, & BGP
	4.2.2 Components: Blades, Routers, & ASes

	4.3 Router Grafting Architecture
	4.3.1 Copying BGP Session Configuration
	4.3.2 Exporting & Resetting Run-Time State
	4.3.3 Migrating TCP Connection & IP Link
	4.3.4 Importing BGP Routing State

	4.4 Correct Routing and Forwarding
	4.4.1 Control Plane: BGP Routing State
	4.4.2 Data Plane: Packet Forwarding

	4.5 BGP Grafting Prototype
	4.5.1 Configuring the Migrate-To Router
	4.5.2 Exporting Migrate-From BGP State
	4.5.3 Exporting Migrate-From TCP State
	4.5.4 Importing the TCP State
	4.5.5 Migrating the Layer-Three Link
	4.5.6 Importing Routing State

	4.6 Optimizations for Reducing Impact
	4.6.1 Reducing Impact on eBGP Sessions
	4.6.2 Reducing Impact on iBGP Sessions
	4.6.3 Eliminating Processing Entirely

	4.7 Performance Evaluation
	4.7.1 Grafting Delay and Overhead
	4.7.2 Optimizations for Reducing Impact

	4.8 Traffic Engineering with Grafting
	4.8.1 Traffic Engineering Today
	4.8.2 Migration-Aware Traffic Engineering
	4.8.3 Practical Considerations
	4.8.4 The Max-Link Heuristic
	4.8.5 Experimental Results on Internet2
	4.8.6 Migration Improves Network Utilization
	4.8.7 Frequent Migration is Not Necessary
	4.8.8 Only a Fraction of Links Need to be Migrated

	4.9 Related Work
	4.10 Summary

	5 Conclusion
	5.1 Summary of Contributions
	5.2 A Unified Architecture
	5.3 Future Work
	5.3.1 Monitoring in Addition to Voting for a Bug-Tolerant Router
	5.3.2 Hosted and Shared Network Infrastructure with VROOM
	5.3.3 Router Grafting for Security

	5.4 Concluding Remarks

